čtvrtek 28. prosince 2023

Jak určit stoupací zónu běžeckých lyží?

Na rozdíl od běžeckých lyží na bruslení neboli volný styl, jejichž skluznice tvoří jenom jedna velká kluzná zóna sahající od špičky lyže až po její patku, tvoří skluznici běžeckých lyží na klasiku neboli klasický styl dvě zóny, a to zóna kluzná - stejně jako u lyží na bruslení - a zóna stoupací neboli odrazová. Kluzná zóna má přitom dvě části - horní a spodní, mezi horní a spodní kluznou zónou se pak nachází zóna stoupací.

A teď totéž názorněji: jistě jste si všimli, že běžecké lyže - zvláště ty na klasiku - jsou jaksi prohlé či vypouklé. Pokud lyže položíte na přiměřeně rovný a tvrdý povrch (v době mého mládí jsme na to vysazovali dveře od koupelny) a stoupnete si na ně tak, že rovnoměrně zatížíte obě lyže, zjistíte, že skluznice lyže se povrchu dotýká ve své spodní a horní části. Naopak v místech, kde máte botu s vázáním, zůstává mezi skluznicí lyže a povrchem drobná mezera. V místech, kde se lyže dotýká, jsou kluzné zóny, v místech, kde zůstává mezi skluznicí a povrchem mezera, se nachází stoupací zóna.

Výše popsaný jev nastane tedy pouze v případě, že Vaše hmotnost plus mínus odpovídá tvrdosti lyže. Stotřicetikilové chlapisko příliš měkké lyže úplně promáčkne, i při rovnoměrném rozložení váhy na obě lyže. Pokud se padesátikilový komár naopak postaví na příliš tvrdé lyže, bude stoupací zóna sahat s trochou nadsázky od špičky až po patku lyže.

První pravidlo tedy zní: Vaše váha musí plus mínus odpovídat tvrdosti lyže. 

Pokud nejste ani jeden extrém (ani stotřicetikilové chlapiskom, ani padesátikilový komár, váhu u žen se neodvážím komentovat), nemusíte této problematice věnovat žádnou velkou pozornost, jelikož běžné kategorie dnešních lyží jsou navrženy tak, aby pokryly takřka celé běžné váhové spektrum.

Pokud si ale chcete snadno a rychle ověřit, že tvrdost Vašich nových běžek odpovídá plus mínus Vaši hmotnosti, pak pro Vás máme jednoduchou radu: změřte si velikost stoupací zóny (jak se už za chvíli dozvíte), a pokud její velikost odpovídá přibližně 1/3 délky lyže, pak tvrdost lyže odpovídá Vaší hmotnosti.

Druhé pravidlo tedy zní: správná tvrdost lyže odpovídá správné velikosti stoupací zóny a naopak. Správná velikost stoupací zóny se přitom pohybuje mezi 50 až 70 cm a odpovídá přibližně 1/3 délky lyže.

Jak tedy určit stoupací zónu běžeckých lyží na klasiku?

Způsobů je hned několik, a tak si je projdeme jeden po druhém, od nejjednoduššího po nejpřesnější.

Rychlý způsob

Vezměte jednu z lyží do ruky a na boku lyže si např. fiksem označte místo, kde končí Vaše bota upnutá do vázání (když říkám, kde končí, tak myslím opravdu konec boty, a nikoli místo, kde na lyži dosedá Vaše pata). Teď od tohoto místa odměřte 50 až 70 cm směrem ke špičce lyže. 50 cm odměřte u krátkých lyží, jelikož jste menší postavy, 70 cm u dlouhých lyží, jelikož jste vysoké postavy. Toto druhé místo označte rovněž fiksem. Prostor mezi první a druhou značkou je mazací zóna. Hotovo! Do takto určené stoupací zóny mažeme jak tuhé, tak tekuté vosky i veškeré alternativní druhy mázy (např. tekuté vosky ve spreji, stoupací pásku).

Rychlý způsob pro tuhé a tekuté vosky

Tento způsob již vyžaduje spolupráci dvou osob a přiměřeně tvrdý a rovný povrch (dveře od koupelny). Lyžar se obuje do lyžařských bot. Obě lyže se položí na přiměřeně rovný a tvrdý povrch tak, jako by stály ve stopě. Lyžař se na ně postaví a upne boty do vázání (pozor na poškození skluznice!). Před tím, než lyžař lyže zatíží, zasune druhá osoba (doporučení: nikoli manželka) jednou přeložený list papíru pod střední část lyže. Lyžar zatíží rovnoměrně obě lyže a druhá osoba posunuje jednou přeložený list papíru směrem ke špičce lyže. V místech, kde už to nejde dál, udělá na boku lyže značku. Potom posunuje papírem ze středu lyže směrem k patce, v místech, kde se papír zastaví ještě značku neudělá, ale podívá se, jestli je za koncem boty, pokud ano, pak stoupací zóna končí nejdále koncem boty! Pokud ne, udělá značku. Takto zjištěná stoupací zóna slouží pro tuhé vosky. Pro tekuté vosky neboli klistry se použije stejný postup, avšak s tím rozdílem, že list papíru se přeloží 2x. Stoupací zóna pro klistry je tedy o něco kratší.

Přesná univerzální stoupací zóna

I tento způsob vyžaduje spolupráci dvou osob a přiměřeně tvrdý a rovný povrch (dveře od koupelny). Lyžar se obuje do lyžařských bot. Obě lyže se položí na přiměřeně rovný a tvrdý povrch tak, jako by stály ve stopě. Lyžař se na ně postaví a upne boty do vázání. Druhá osoba zasune nepřeložený list papíru pod střední část lyže. Lyžař zatíží rovnoměrně obě lyže (stojí např. jako při soupaži). Druhá osoba udělá značky na boku lyže tam, kde se papír zastaví. Druhá osoba vrátí list papíru opět do středu lyže. Lyžař zatíží jednu lyži celou váhou (jako při odrazu při stříďáku). Druhá osoba opět udělá značky na boku lyže tam, kde se papír zastaví. Nyní se obě zóny zprůměrují. Konec stoupací zóny je však vždy nejdále v místě, kde končí bota. Do takto určené stoupací zóny mažeme jak tuhé vosky, tak klistry.

Přesná stoupací zóna pro tuhé a tekuté vosky

Postup je stejný jako u přesné univerzální stoupací zóny. Rozdíl spočívá pouze v tom, že se celá operace (zatížit rovnoměrně, zatížit celou vahou, zprůměrovat, konec max. u konce boty) provede dvakrát, jednou s nepřeloženým listem papíru a podruhé s jednou přeloženým listem papíru, delší stoupací zóna je pro tuhé vosky, kratší je pro klistry.

Doporučení při nepříliš spolehlivém odrazu

Ještě před tím, než se rozhodnete zlepšit odraz tím, že přidáte další vrstvu vosku, nebo nanesete o stupeň měkčí vosk, můžete zkusit lehce prodloužit mazací zónu, a to především směrem k patce lyže (za konec boty).


úterý 19. prosince 2023

Jak fungují struktury - teorie třecího tepla...

 Jak ale strukturování za podmínek tzv. hraničního režimu tření funguje? Co jsou základní principy a veličiny, které bychom se měly snažit ovlivňovat?

 

Je to tak, abychom mohli používat správně struktury v tzv. hraničním režimu tření, musíme jim rozumět, musíme chápat – alespoň rámcově, co se to tam dole pod skluznicí děje. Můžeme samozřejmě – podobně jako někteří naši přední odborníci na strukturování – navrhovat nové, mnohovrstvé struktury, měnit hloubku, tvar, přítlak, rychlost posuvu atd., aniž bychom tušili, jaký vliv má který parametr, protože, jak naši mistři brusu sami říkají, je třeba mít velké cíle… Ale vězte prosím, že podobně jako můj čtyřletý syn nemůže řídit provoz jaderné elektrárny, tak nemůže nikdo, kdo nemá ani páru, ani ánung o tom, jak struktury fungují a jaké parametry mají jaký vliv, ani vymyslet, ani vyvinout žádnou dobrou strukturu, bez ohledu na to, zda je to šéf servisu nebo jiný aparátčík kdovíjakého svazu 

 

Jedna z nejrozšířenějších a aktuálně nejvíce preferovaná teorie říká, že základem funkce struktur v tzv. hraničním režimu tření je třecí teplo. Zní to divně, ale smysl to celkem dává. Minimálně pro podmínky mezi ledovým povrchem a ocelovou čepelí. Z předchozího příspěvku víme, že v hraničním režimu tření se oba povrchy, tedy skluznice lyže na straně jedné, a sníh na straně druhé, dotýkají v oblasti asperit, tedy největších nerovností. Víme, že za těchto podmínek je skutečná kontaktní plocha mezi lyží a sněhem velmi malá a že v kontaktních bodech působí relativně vysoký tlak, který je společně s drsností obou povrchů zdrojem relativně velkého tření. A tření vytváří teplo. 

 

Dobře. Ale jak s třením a teplem souvisí strukturování? Díky jemné struktuře se sice zvětší celková plocha skluznice, ale skutečná kontaktní plocha mezi povrchem skluznice a povrchem sněhu se naopak ještě zmenší, rapidně se zmenší počet kontaktních bodů. A protože fyzika funguje i u lyžařů, tak při stejném zatížení (strukturování nemá – Bohu dík – žádný vliv na hmotnost lyžaře) a menší ploše opět vzroste tlak. V důsledku vyššího tlaku se dle této teorie zvýší tření. Vyšší tření vygeneruje více tepla. A? Jednoho teď musí napadnout, že kvůli strukturování jsme dosáhli přesně opačného efektu, než o který jsme usilovali, neb tření se nám naopak zvýšilo, tedy skluz lyže bude ještě horší a energeticky náročnější. To je sice pravda, ale pouze zčásti, respektive pouze v počáteční fázi. Protože – dle teorie třecího tepla – vyšší tření, vyrobí více tepla a větší množství tepla nataví mikroskopické kontaktní plochy. A? A začne se vytvářet vodní film. A? A vodní film začne na straně jedné působit jako lubrikant a jak víme – třeba ze sexu – zvláště tekutý lubrikant prudce snižuje tření, na straně druhé začne vodní film oddělovat povrchy, čímž začne přebírat část zatížení a díky tomu snižovat tlak, a s poklesem tlaku a narůstající lubrikovanou plochou začne prudce klesat tření… A? A lyže lépe klouže!

 

Podle teorie třecího tepla tedy správně zvolené strukturování zlepšuje produkci vodního filmu, a tím umožňuje změnu třecího režimu z tzv. hraničního třecího režimu do tzv. smíšeného režimu tření za chladných podmínek.

 

Obrázek č. 1: a) nenarušený povrch jemnozrnného sněhu, za zmínku stojí krčky či můstky propojující jednotlivá zrna, vznikající primárně při transformaci sněhu, b) v červeném orámování povrch sněhu natavený v důsledku působení tepla (v tomto případě otisk prstu), zdroj: J. H. Lever et. col., Evidence that abrasion can govern snow kinetic friction, Journal of Glaciology, 2018

 

 

Teorii třecího tepla podporuje – mimo jiné – skutečnost, že základní materiál skluznice, tedy UHMWPE je vynikající izolant, tedy kromě toho, že prakticky nevede elektrický proud, velmi špatně přenáší teplo. Pokud tedy teplo neodchází přes – izolující – skluznici směrem do lyže, odchází přes kontaktní body směrem do sněhové pokrývky, kde – jak postuluje teorie třecího tepla – natavuje mikroskopické kontaktní body a generuje vodní film.

 

Z pohledu teorie třecího tepla je naopak problematický grafit, který se ve formě sazí přidává takřka do všech závodních a většiny sintrovaných skluznic lyží. Grafit je totiž nejenom tzv. tuhý lubrikant. Podobně jako tuhý deodorant účinně snižuje pocení, tak grafit coby tuhý lubrikant výborně snižuje tření, a to díky své unikátní lamelární molekulární struktuře.

 

 

Obrázek č. 2: schematické znázornění molekulární struktury grafitu, kde atomy uhlíku v jednotlivých lamelách jsou vázány pevnými vazbami, zatímco jednotlivé vrstvy či lamely mezi sebou pouze velmi slabými silami, zdroj: R. Swar, Effects of Materials and Texturing on Wettability of Ski Base, Degree Project, 2022

 

Zatímco atomy uhlíku v jednotlivých vrstvách jsou vázány velmi pevnými kovaletními vazbami, jsou jednotlivé vrstvy neboli lamely mezi sebou vázány velmi slabými van der Waals silami, díky čemuž lamely po sobě krásně kloužou. Díky svým lubrikačním vlastnostem snižuje tedy grafit tření přímo v mikroskopických kontaktních bodech mezi nerovnostmi na skluznici a nerovnostmi na sněhové pokrývce, čímž částečně oslabuje nárůst třecího tepla v počáteční fázi kontaktu.

 

To ale není hlavní problém grafitu pro teorii třecího tepla. Jak jsme uvedli výše, je grafit nejenom výborný tuhý lubrikant, nýbrž také vynikající vodič. A jako vynikající vodič nejenom vede výborně elektrickou energii (což je u tření na studeném, suchém a krystalickém sněhu velmi preferovaná vlastnost), nýbrž vede také výborně teplo, ano, přesně to teplo, které je v teorii třecího tepla využíváno k natavování kontaktních bodů a produkci vodního filmu. Teplo, které je díky enormně vodivému grafitu odvedeno z místa kontaktních bodů do těla lyže, pak zpomaluje a oddaluje produkci vodního filmu a kontakt mezi skluznicí lyže a sněhem je déle řízen zákony tzv. hraničního tření, a to nikdo nechce…

 

Kromě lubrikačních vlastností a enormní vodivosti má grafit ještě jednu nikoli právě vítanou vlastnost pro podmínky tzv. hraničního režimu tření. Která to je? Grafit je měkký, extrémně měkký. A proto s rostoucím podílem grafitu ve skluznici (u závodních lyží může být podíl grafitu až 20 %) narůstá riziko poklesu tvrdosti skluznice. A právě tvrdost skluznice je ústředním tématem druhé teorie, která vysvětluje efekty strukturování za podmínek slabého vodního filmu neboli tzv. hraničního režimu tření… ale o té si povíme zase někdy příště!

 

 

Obrázek č. 2: tabulka specifikující vlastnosti speciální závodní skluznice pro studené podmínky od společnosti ISOSPORT. Co všechno zde můžeme vyčíst? Obsah sazí, tedy grafitu až 20 %, ale zároveň velmi dobrá tvrdost, tedy 65 shore D, vysoká hustota, tedy 0,985 g/cm3 a slušná schopnost absorbovat vosk 1,8 g/cm2, zdroj: internetová stránka společnosti ISOSPORT VERBUNDTEILE Austria

 

Teorie třecího tepla tedy postuluje, že strukturováním ještě více snížíme plochu kontaktních bodů mezi sněhem a skluznicí, čímž zvýšíme tlak a tření. Toto zvýšené tření má produkovat více třecího tepla. Teplo získané třením pak natavuje kontaktní body a generuje vodní film, vodní film postupně mění režim tření z hraničního na smíšený. Se změnou třecího režimu má prudce klesat tření, a tedy zlepšovat se skluz. Tak tedy dle teorie třecího tepla zlepšuje strukturování skluz v podmínkách hraničního režimu. Ale je tomu opravdu tak???

 

pondělí 18. prosince 2023

Jak vybrat lyže se správnou skluznicí? Část III.

 Jak vybrat lyže se správnou skluznicí? Část III.

V předchozím příspěvku jsme se věnovali aditivům zlepšujícím kluzné a mechanické vlastnosti skluznic běžeckých lyží, a to primárně grafitu a fluoru. Dnes jsou na pořadu dne barviva a antioxidační přípravky, které nám umožní se trochu zevrubněji podívat na fenomén oxidace skluznice jako takový.


Barviva


Barviva se přidávají do skluznic běžeckých lyží jednak z reklamních důvodů, jednak z důvodu rozdílného absorbování jednotlivých složek slunečního záření různě barevnými povrchy. Konkrétně se pak jedná o rozdílné absorbování viditelného světla, ultrafialového záření a infračerveného záření odraženého sněhovou pokrývkou.


Sníh velmi dobře odráží jak viditelné světlo, tak ultrafialové záření, o něco méně dobře záření infračervené, která na něj dopadají nejen během slunečných dnů, nýbrž i při zamračené obloze. Povrchem světlé, tedy neznečištěné sněhové pokrývky odražené viditelné světlo, ultrafialové a infračervené záření pak následně ovlivňuje kluzné vlastnosti skluznice lyže.


Tmavé barvy skluznice (např. černá) pak více světla a záření absorbují a méně odrážejí, naopak světlé barvy (např. transparentní) více světla a záření odrážejí a méně absorbují.


Efekt rozdílného absorbování viditelného světla a dalších složek slunečního záření odraženého od sněhové pokrývky se rovněž využívá pro zlepšení kluzných vlastností. Např. za velmi chladných, ale zároveň slunečných podmínek bude černá skluznice absorbovat větší množství jednotlivých komponent slunečního záření, které se odrazily od sněhové pokrývky, a může se tak lépe a rychleji „ohřát“. Ohřátá skluznice pak bude přispívat k produkci vodního filmu za chladných podmínek a díky tomu ke změně režimu tření mezi skluznicí a sněhovou pokrývkou, respektive vodním filmem. Změna třecího režimu z hraničního na chladný smíšený pak povede ke snížení koeficientu tření. Nižší koeficient tření pak znamená lepší skluz!


Až budete vybírat svým ratolestem lyže s barevnou skluznicí z pestré palety výrobci nabízených barev (vedle klasické černé a transparentní se nabízí zelená, modrá, žlutá, červená, fialová atd.), pak prosím nezapomínejte na to, že různé barvy rovněž různě ovlivňují kluzné vlastnosti. Ale dětem klidně dopřejte fialovou nebo červenou!


Antioxidační přípravky


Skluznice oxiduje, vlastní UHMWPE o něco méně, aditiva o něco více. Příčiny oxidace skluznice běžeckých lyží jsou různé, důsledky oxidace jsou ale vždy fatální.


Základní příčinou oxidace skluznice je kontakt s molekulami kyslíku obsaženými v běžné atmosféře, proto doporučujeme zvláště po sezóně před uskladněním lyží napustit skluznici dostatečně silnou vrstvou ochranného vosku, který zamezí přístupu kyslíku ke skluznici, a tím oxidaci v době uskladnění. Jednoduché a účinné! Kam kyslík nemůže, to nezoxiduje…

K oxidaci skluznice však dochází také při vlastním lyžování. Tření vytvářené při klouzání skluznice po povrchu sněhové pokrývky a vodního filmu vede – mimo jiné – ke štěpení vody na H+ a OH- s enormním chemickým potenciálem. OH- se díky negativnímu náboji velmi dobře váže na skluznici lyže, kde následně způsobuje oxidaci povrchu skluznice.


Oxidaci dále podporuje používání nevhodných servisních přípravků jako např. měděných, bronzových či mosazných kartáčů. Kontakt UHMWPE s mědí způsobuje na povrchu skluznice tvorbu tzv. volných radikálů, které následně způsobují silnou oxidaci.


Z předchozích příspěvků víme, že UHMWPE jako základní materiál skluznice je tvořen velmi dlouhými a navzájem propletenými molekulárními C-H řetězci. Uvnitř skluznice je mezi těmito molekulárními řetězci minimální volný prostor, nicméně na povrchu skluznice tvoří tyto řetězce jakési svazky či shluky, které volně vyčnívají na povrch. Tyto volně vyčnívající „vlásky“ či „chloupky“ mají délku cca 100 až 250 nm a je mezi dostatečný prostor pro molekuly kyslíku nebo hydroxidové ionty. A právě tyto volně vyčnívající vlásky molekulárních řetězců UHMWPE jsou nejrychleji a nejsnadněji zasaženy oxidací.


Zoxidované vlásky UHMWPE se následně extrémně dobře váží se sněhovými krystaly, čím ostřejší jsou sněhové krystaly, tím lépe se na ně zoxidované vlásky UHMWPE váží. Jakmile se na zoxidované vlásky UHMWPE naváží sněhové či ledové krystaly, skluznice začne drhnout, a kromě servisního zásahu nepomůže prakticky nic…


Základní způsob, jak zabraňujeme oxidaci povrchové nano-struktury skluznice je napouštění voskem. Je to tak, jeden z hlavních důvodů, proč na skluznici lyže aplikujeme kluzné vosky, je ochrana skluznice před oxidací při vlastním lyžování.


A protože i výrobci skluznic lyží jsou si velmi dobře vědomi fatálních důsledků oxidace na životnost a kluzné vlastnosti skluznice přidávají do základního materiálu různá aditiva omezující oxidaci UHMWPE. Častými antioxidanty používanými ve skluznicích běžeckých lyží jsou BHT, MBMBP nebo TDE, dále pak fosfitové estery nebo fenothiaziny. Volba a způsob použití vhodného antioxidačního prostředku však ovlivňuje celá řada faktorů, zvláště pak chemická struktura UHMWPE a způsob zpracování.


Bez ochrany skluznice pomocí kluzných vosků však ani nejlepší antioxidanty nezabrání relativně rychlé oxidaci povrchové nano-struktury skluznice.


Jakým způsobem je ale skluznice lyže chráněna voskem při vlastním lyžování?


Je samozřejmé, že při lyžování nemůžeme nechat na skluznici silný ochranný film vosku, který na skluznici lyže zůstane po napouštění skluznice voskem před uskladněním.

Je to tak, přebytečný vosk musíme ze skluznice před vlastní jízdou odstranit, aby nebrzdil a nezvyšoval tření. Co tedy skluznici lyže chrání primárně před působením OH- a následnou oxidací?


Jak již víme, je povrch skluznice tvořen flexibilními svazky molekulárních řetězců UHMWPE, které jaksi volně vyčnívají z hmoty skluznice, mají délku cca 100 až 250 nm a je mezi nimi relativně velký volný prostor. A právě tento volný prostor mezi jednotlivými molekulárními nano-vlásky na povrchu skluznice je hlavním místem, kde ulpívají molekuly kluzného vosku, které se tímto způsobem provazují se základním materiálem skluznice. Na molekulární úrovni tedy vzniká jakási nová kluzná vrstva tvořená molekulárními řetězci základního materiálu skluznice na straně jedné a molekulárními řetězci kluzných vosků na straně druhé.


Tato nová kluzná vrstva nejenom zlepšuje kluzné vlastnosti skluznice vyladěné podílem kluzného vosku na konkrétní sněhové podmínky, nýbrž základní materiál skluznice, tedy UHMWPE účinně chrání před oxidací, která by zásadním způsobem zhoršila kluzné vlastnosti a životnost skluznice.


Ale pozor! U dětských lyží lze oxidaci využívat také pozitivně, tedy pokud Vás úplně netrápí kratší životnost skluznice. Pokud na skluznici dětských lyží nějakou dobu neaplikujete kluzný vosk, dojde k oxidaci molekulárních vlásků na povrchu skluznice. Na vlásky se pak budou dobře vázat sněhové a ledové krystaly a lyže nepojedou, ba co víc, při pokročilejší oxidaci budou dokonce stoupat do kopce i bez stoupacích vosků, budou děti lépe poslouchat a nebudou se soustavně rozjíždět do všech stran, zkrátka a dobře nepojedou… A vězte, že budou situace, kdy tuto vlastnost Vaše děti zcela jistě ocení! 

 

 

neděle 3. prosince 2023

Jak vybrat lyže se správnou skluznicí? Část II.

 Jak vybrat lyže se správnou skluznicí? Část II.

V předchozí části příspěvku jsme si vysvětlili, že na kvalitu a parametry skluznice, a tedy skluzných vlastností lyže má vliv především technologický postup, kterým byla skluznice vyrobena, a materiál, který byl k výrobě skluznice lyže použit.


Další vlastnost, na kterou bychom se měli při výběru nových lyží s ohledem na skluznici zaměřit, jsou aditiva neboli další materiály, které byly do skluznice z různých důvodů přidány.


K základním aditivům přidávaným do skluznic běžeckých lyží patří:

·      Aditiva pro zlepšování skluzných vlastností

·      Aditiva pro zlepšování mechanických vlastností

·      Barviva

·      Antioxidační přípravky

·      UV-stabilizátory

·      Antistatické přípravky


Aditiva pro zlepšování skluzných a mechanických vlastností


Grafit


Grafit je asi nejčastějším aditivem ve kluznicích běžeckých lyží, a to možná také proto, že je velmi levný. Grafit propůjčuje společně s Carbon Black skluznici dnes typickou sytě černou barvu. Grafit je tzv. tuhý lubrikant, který má díky své lamelární struktuře velmi nízký koeficient tření. Díky své vynikající elektrické vodivosti zlepšuje grafit elektrostatické vlastnosti skluznice. Grafit je také velmi lehký, a proto při vyšší podílu v základním materiálu skluznice (UHMWPE) snižuje její hmotnost.


Grafit je bohužel také jeden z nejměkčích materiálů, a proto zásadním způsobem snižuje celkovou tvrdost skluznice, což je v tzv. hraničním režimu tření mezi skluznicí lyže a sněhovou pokrývkou extrémně nevýhodné, protože v hraničním režimu tření je právě tvrdost skluznice hlavním parametrem, který zlepšuje skluzné vlastnosti.


Bohužel primárně v hraničním režimu se na finální hodnotě tření mezi skluznicí lyže a sněhovou pokrývkou podílí také tzv. elektrostatické tření, které grafit díky své výborné elektrické vodivosti významně snižuje. V hraničním režimu tření je tedy využití grafitu rozporuplné.


Jsou-li sněhové podmínky spíše pouze agresivní a abrazivní, bez podílu elektrostatické třecí složky, pak za daných podmínek doporučujeme používat skluznice bez přídavku grafitu a usilovat o co nejvyšší tvrdost skluznice. Pokud naopak panují sněhové podmínky s vysokým podílem elektrostatické třecí složky (studený skřípavý sníh), doporučujeme skluznice s vysokým přídavkem grafitu, a to i přes klesající tvrdost skluznice.


V ostatních režimech tření (primárně hydrodynamickém, ale i teplém a studeném smíšeném třecím režimu) je skluznice s přídavkem grafitu vždy správná volba, pouze ve studeném smíšeném režimu musíme být obezřetní při sněhových podmínkách s narůstající abrazí.

Mějme prosím také na paměti, že primárně při abrazivních podmínkách se do prostředí grafit uvolňuje v podobě nanočástic, které se mají tendenci usazovat primárně v plicích.

Ve skluznicích závodních lyží může být použit také fluorizovaný grafit, jehož koeficient tření je ještě nižší než COF grafitu, a to především díky zvětšené vzdálenosti mezi jednotlivými vrstvami lamelové struktury grafitu. Fluorizovaný grafit však ztrácí elektrickou vodivost a nezlepšuje tedy elektrostatické vlastnosti skluznice.


Pokud by Vás tedy trenéři Vašich dětí přesvědčovali, že pro své ratolesti potřebujete různé lyže na studené a teplé podmínky, doporučujeme pro teplé podmínky skluznici s grafitem (tedy černou) a pro studené podmínky skluznici transparentní (tedy světlou). 


Fluor


Vedle fluorizovaného grafitu se můžete setkat i s fluorizovaným polyethylenem. Podobně jako vosky je také skluznice lyží tvořena uhlovodíkovými molekulárními řetězci. Molekulární řetězce C-H v základním materiálu moderních skluznic (UHMWPE) mohou být modifikovány takovým způsobem, že některé atomy vodíku jsou nahrazeny atomy fluoru. Jedná se tedy o tzv. částečně fluorizovaný UHMWPE, tedy určitou obdobu částečně fluorizovaných kluzných vosků.

V jiných případech byl fluor do skluznic lyží přidáván jako PTFE, neboli TEFLON. Granulovaný teflon se přidával do skluznic při procesu sintrování.


Předpokládalo se, že fluor obsažený ve struktuře skluznice je odolnější vůči sublimaci a vyčpívání než fluor obsažený v kluzných voscích. Je velká otázka, zda tomu tak opravdu bylo. Jedno je však jisté, fluor se do skluznic přidával a na rozdíl od vosků tam – alespoň na začátku – opravdu byl.


Nepředpokládáme, že byste dětem kupovali lyže s fluorizovaným grafitem, fluorizovaným UHMWPE nebo s přídavkem PTFE, ale kdyby nějakého šikovného obchodníčka v lokální speciálce napadlo se takových lyží na Váš účet zbavit, tak prosím vězte, že i přesto, že zákaz fluoru se Vašich dětí netýká, je fluor obsažený přímo ve struktuře skluznice stejně nebezpečný jako fluor obsažený ve fluorových voscích! Fluor je prostě FUJ!


Disulfid molybdenu


Disulfid molybdenu má vynikající lubrikační vlastnosti a jedinečné mechanické vlastnosti, jako jsou odolnost vůči oděru, pružnost, přilnavost a chemickou stálost. Vynikající lubrikační vlastnosti disulfidu molybdenu jsou dány jeho jedinečnou krystalickou mřížkou, kde jsou jednotlivé vrstvy či lamely spojeny slabými van der Waals vazbami, takže vykazují velmi nízký smykový odpor, zatímco síra a molybden jsou v rámci jednotlivých lamel provázány pevnými kovalentními vazbami, díky kterým jsou jednotlivé lamely velmi odolné proti oděru. Z těchto důvodů zlepšuje disulfid molybdenu jak kluzné, tak mechanické vlastnosti skluznic lyží. 


Carbon Black / Nylon / Graphen


Každý výrobce se snaží získat prakticky jakoukoli konkurenční výhodu spočívající ve zlepšení skluzných vlastností na straně jedné a zlepšení odolnosti vůči oděru na straně druhé. Jako aditiva ovlivňující primárně mechanické a sekundárně skluzné vlastnosti se ve skluznicích lyží mohou vyskytovat materiály jako Carbon Black, nylon či grafén.


Grafén je tvořen jedinou vrstvou uhlíkových atomů uspořádaných ve struktuře včelí plástve, zlepšuje odolnost a pružnost, vykazuje extrémní elektrickou vodivost a má nízkou hmotnost. K nevýhodám grafénu jako aditiva do skluznic lyží patří především vysoká cena a velmi dobrá tepelná vodivost. Zvláště v tzv. hraničním režimu a studeném smíšeném režimu tření mezi skluznicí a sněhovou pokrývkou je vysoká tepelná vodivost velmi nevýhodná, jelikož odvádí teplo z místa kontaktních bodů, které by mohlo být využito pro produkci vodního filmu.


Carbon Black je jemný černý prášek, který primárně zvyšuje pevnost, houževnatost a odolnost vůči oděru. Přidává se spíše do skluznic sjezdových lyží, nicméně jeho použití pro běžecké lyže na studené a vysoce abrazivní podmínky je rovněž výhodné. Carbon Black také zvyšuje elektrickou vodivost skluznice.


Nylon se přidává do skluznic běžeckých lyží primárně za účelem zvýšení odolnosti vůči oděru, kdy se nylonová vlákna rozpustí do lineární mřížky polyethylenu. Nylon jako aditivum do běžeckých lyží je tedy vhodný primárně pro studené a abrazivní podmínky.

Na rozdíl od grafitu a fluoru uvádíme tato aditiva spíše pouze pro úplnost či celkový přehled. S jejich přítomností či nepřítomností v dětských lyžích si rozhodně hlavu lámat nemusíte… Oni tam pravděpodobně stejně nebudou 

pátek 1. prosince 2023

Jak vybrat lyže se správnou skluznicí? Část I.

 Jak vybrat lyže se správnou skluznicí? Část I.  

Máte doma více dětí a potřebujete před novou sezónou obnovit lyžařskou výbavu - přirozeně zvláště tu dětskou, protože my dospělí už naštěstí nerosteme? Děsí vás, co všechno bude stát, když nakupujete opět na jednu či dvě sezóny, než z vybavení dítě vyroste? A možná se obáváte, abyste se při nákupu nových dětských lyží opět nespálili?

Velký tlak na cenu, který se s ohledem na dění ve světě bude spíše nadále zvyšovat, vede k tomu, že se na trhu objevuje stále větší podíl nekvalitních výrobků a trend se bohužel nevyhýbá ani renomovaným firmám, z čehož vyplývá první doporučení: Nespoléhat pouze na kvalitní značky, i ty dnes, bohužel, nabízí vedle velmi kvalitních výrobků i velmi nekvalitní.

Jinými slovy, ani ti, co nemají právě hluboko do žlabu, se nespasí tím, že pro své ratolesti pořídí blyštivou značku, protože se lyžuje na skluznici, a nikoli na reklamní ploše. A protože právě skluznice je asi vůbec nejdražší část lyže, nejčastěji a nejvíce se na ní šetří, je drahá a není vidět. Z této úvahy tedy vyplývá druhé doporučení: Lyže, včetně dětských, se kupují primárně podle skluznice a nikoli podle reklamní plochy na horní části.

Teď si mnozí z vás řeknou, že se jich to netýká, protože máte naštěstí speciální obchody, kde vám dobře poradí. Nechci vypadat jako škarohlíd, ale i některé z nich jsou nakonec jen obchody, jejich obživou bývá zisk a prodává se naskladněný materiál, na kterém je možné hodně vydělat. V některých případech ani hromadné nákupy lyží přes sportovní kluby nemusí být žádnou výhrou. Může, ale nejedná se o zásadu. Záleží tedy na serióznosti prodejce: Nespoléhejme se na druhé (speciální obchody a kluby), ale sami požadujme informace, na základě kterých se budeme moci spolehlivě rozhodnout.

V následujících odstavcích si tedy pojďme vysvětlit, jaké jsou možnosti výroby skluznic a použitých materiálů, a s tím související kvality skluznic. 

­__________________________________________________________________________________

1. Výrobní postup, kterým byla skluznice lyže vyrobena

Existují dva základní druhy skluznic: extrudované a sintrované 

 

Extrudované skluznice jsou spíše doménou rekreačního lyžování, zatímco sintrované skluznice slouží primárně pro výkonnostní či vrcholový sport. Jak extrudované, tak sintrované skluznice se zpravidla nabízejí v černé, transparentnía kolorované variantě. 

 

Černé zbarvení způsobuje primárně přídavek grafitu, zpravidla ve formě sazí.  Do černa zabarvuje jinak transparentní PE dále carbon black a grafén, které se však do skluznic běžeckých lyží přidávájí spíše vzácně. U sintrovaných skluznic může podíl grafitu dosahovat až 20 procent objemové hmotnosti, u extrudovaných bývá podíl grafitu v rozpětí 2 až 5 procent. S rostoucím podílem grafitu se zlepšují lubrikační vlastnosti skluznice (grafit je tzv. tuhý lubrikant s lamelární strukturou), narůstá elektrická, ale bohužel také teplená vodivost skluznice a může klesat tvrdost.

 

Transparentní či bíle zbarvené skluznice odkazují na barevnost základního materiálu, tedy polyetylenu. U transparentních skluznic se můžeme – pravděpodobně z důvodu menšího podílu plniv –  setkat s překvapivě lepší schopností absorbovat skluzné vosky. Schopnost skluznice absorbovat skluzný vosk se udává v gramech na mm2 a pohybuje se v rozpětí od cca 0,5 až 3 g na 1 mm2. Schopnost skluznice absorbovat vosk bychom neměli zaměňovat s tím, kolik skluzného vosku na skluznici před zažehlením (při aplikaci za tepla) nebo rozetřením (při aplikaci za studena) naneseme, ani s tím, jak dobře či špatně se absorbovaný vosk na skluznici naváže, a tedy jakou bude mít trvanlivost. Proto se můžeme setkat i s tím, že některé extrudované – zvláště transparentní – skluznice mohou mít podstatně vyšší hodnotu absorbce skluzného vosku než dražší a lepší skluznice sintrované.

 

Kolorování či probarvování skluznic do různých barev (modrá, červená, fialová, zelená, žlutá, a celá řada dalších barev) slouží primárně k reklamním účelům, a to zvláště u levnějších extrudovaných skluznic. Primárně u závodních lyží se různé zabarvení skluznice využívá pro ovlivňování absorbce jednotlivých viditelných i neviditelných složek slunečního záření, a tedy skluzných vlastností.

 

Extrudované skluznice jsou zpravidla levnější, z důvodu nižší molekulární hmotnosti však mají celkově horší mechanické a skluzné vlastnosti. Zpravidla jsou charakteristické také nižší schopností přijímat skluzné vosky, ale i zde existují výjimky (zvláště u transparentních skluznic). Extrudované skluznice se zkrátka a dobře používají na levnějších lyžích pro primárně rekreační účely, existují však i výrobky, kde se hranice mezi extrudovanými a sintrovanými skluznicemi mohou přiblížit (např. CROSS-LINKED PE).

 

Sintrované skluznice jsou zpravidla výrazně dražší než extrudované, ale existuje zde značný rozptyl v kvalitě a ceně, který je dán relativně velkým rozdílem molekulární hmotnosti základního materiálu (UHMWPE) a různými speciálními aditivy. Sintrované skluznice mají – ve srovnání s extrudovanými skluznicemi – lepší mechanické a skluzné vlastnosti a zpravidla také lepší schopnost vázat, a tedy udržet skluzný vosk. Mezi sintrovanými skluznicemi však můžeme narazit na průměrné univerzální skluznice na straně jedné, které nebudou nad dobrými extrudovanými skluznicemi nijak významně vyčnívat, na straně druhé můžeme sehnat špičkové univerzální, ale i vysoce specializované skluznice závodních lyží. 

 

Obrázek č. 1: Schematické znázornění výroby extrudované skluznice

 

 

 

 

 

Obrázek č. 2: Schematické zobrazení výroby sintrované skluznice. Granulovaný materiál se působením tepla a tlaku zformuje do bloku o příslušné šířce. Z tohoto bloku se následně „odřezávají“ pásky skluznice, které se následně lepí na tělo lyže. Velká část výrobců lyží, vyrábí pouze vlastní tělo lyže a skluznici nakupuje u specializovaných výrobců skluznic

 

 

 

 

 

 

__________________________________________________________________________________

 

2.  Materiál, ze kterého byla skluznice vyrobena

 

Jak extrudované, tak sintrované skluznice se dnes vyrábí z polyethylenu (PE), který se skládá z dlouhých řetězců etylenu a přetransformuje se na polyethylen v procesu nazývaném polymerizace.

 

 

Obrázek č. 3: Schematické zobrazení polymerizace. První část obrázku (a) zobrazuje molekulu etylenu. Zdvojená vazba mezi atomy uhlíku se při polymerizaci uvolňuje a reaguje s dalšími monomery etylenu (b). Tímto způsobem vznikají dlouhé molekulární řetězce polyethylenu (c). Čím delší molekulární řetězec, tím vyšší molekulární hmotnost.

 

 

 

 

 

 

 

Pokud polymery vytvářejí přímé, tedy nerozvětvené molekulární řetězce (c), jsou schopné krystalizovat a získávají tak mnohem kompaktnější strukturu. Polyethylen je však schopen vytvářet krystalickou strukturu pouze částečně, a proto ho také označujeme jako semi-krystalický polymer. Skluznice lyže tvořená polyethylenem s přímými a různě dlouhými molekulárními řetězci je pak tvořena, stejně jako základní materiál, krystalickými a amorfními oblastmi.

 

Obrázek č. 4: Krystalická a amorfní struktura polyetylenu. Krystalické části propůjčují polyethylenu tuhost a tvrdost, amorfní části pak elasticitu a odolnost vůči oděru

 

 

 

 

 

 

 

__________________________________________________________________________________

 

Typy polyetylenů a kvalita skluznic

 

 

Přehled jednotlivých typů polyethylenů

 

Existuje prakticky nepřeberné množství různých polyethylenů, v případě lyžařských skluznic se však nabízí primárně následující typy:

 

UHMWPE (Ultra High Molecular Weight Polyethylene) – polyetylen s ultra vysokou molekulární hmotností

 

CROSS-LINKED PE – křížově provázaný polyethylen

 

HMWPE (High Molecular Weight Polyethylene) – polyetylen s vysokou molekulární hmotností

 

HDPE (High Density Polyethylene) – polyetylen s vysokou hustotou

 

Upozornění: názvosloví jednotlivých materiálů se může u různých výrobců lišit!

 

 

V současnosti se nejkvalitnější skluznice běžeckých lyží vyrábí z UHMWPE, do kterého se dále přidávají různá zlepšující aditiva. Molekulární hmotnost tohoto materiálu dosahuje asi 3 až 12 milionů g/mol. UHMWPE se zpracovává prakticky výhradně technologií sintrování. I v případě sintrovaných skluznic z UHMWPE však existují značné rozdíly v kvalitě, jak je patrné právě z rozptylu molekulární hmotnosti. 

 

Zpravidla se nabízí jako černá skluznice, tedy s přídavkem grafitu, nabízí se ale i transparentní a kolorované verze. Neobvyklé nejsou ani skluznice s přídavkem aditiv, jako je např. fluor či disulfid molybdenu. Tady už si ale sáhnete do kapsy celkem hluboko.

 

CROSS-LINKED PE spadá svojí molekulární hmotností do kategorie HDPE a zpracovává se technologií extrudování. Nicméně díky křížovému provázání molekulárních řetězců se svými primárně mechanickými (nikoli kvalitními skluznými) vlastnostmi blíží sintrovanému UHMWPE. CROSS-LINKED PE je nejlepším materiálem, který můžete v kategorii extrudovaných skluznic pořídit.

 

HDPE je základní materiál extrudovaných, tedy primárně turistických skluznic. Molekulární hmotnost HDPE se pohybuje v rozmezí asi 300 až 600 tisíců g/mol. Nabízí se jak černé extrudované HDPE skluznice, kde však přídavek grafitu dosahuje maximálně 5 %, tak transparentní či kolorované. Zvláště u transparentních může být schopnost skluznice absorbovat vosk nadprůměrně dobrá, je však otázkou, zda nadprůměrná schopnost přijímat vosk zde také znamená, že skluznice vosk dostatečně naváže a udrží.

 

HMWPE je něco jako lepší HDPE, tedy HDPE na horní hranici molekulární hmotnosti. Může se však stát, že výrazy HMWPE a HDPE fungují jako synonyma ve skupině tzv. komoditních polymerů. HMWPE se zpracovává procesem extrudování a vedle CROSS PE bude použit u lyží s extrudovanou skluznicí vyšší kategorie.

 

Jak způsob výroby skluznice a jednotlivé druhy polyethylenu poznáte prostým pohledem? Nijak! Požadujte od prodejce technický list, kde by mělo být uvedeno, z jakého materiálu je skluznice lyže vyrobena a jaké jsou její základní vlastnosti. Údaj o použitém materiálu je zcela zásadní. K základním vlastnostem patří: tvrdost, podíl grafitu či jiných aditiv, hustota a schopnost absorbovat vosk. Je však velká otázka, zda budou tyto informace vždy k dispozici.

 

Pokud je v technickém listu lyže uveden jako materiál skluznice pouze PE (polyethylen), pak lyže rozhodně nepořizujte. Jedná se o podobnou situaci jako v případě nákupu medu z EU, nevíte o něm vůbec nic.