Zobrazují se příspěvky se štítkemvodní film. Zobrazit všechny příspěvky
Zobrazují se příspěvky se štítkemvodní film. Zobrazit všechny příspěvky

sobota 11. ledna 2025

Teorie skluzu, část II. - teorie třecího tepla a hydrodynamický režim tření

 Teorie skluzu, část II., teorie třecího tepla a hydrodynamický režim tření

 

Asi nejrozporuplnější teorie skluzu… Teorie třecího tepla tvrdí, že tření mezi povrchem skluznice a povrchem sněhové pokrývky produkuje teplo, které má dostatečně velký energetický potenciál na to, aby docházelo k natavování sněhové pokrývky a produkci vodního filmu mezi povrchem skluznice a povrchem sněhu.

 

S teorií třecího tepla jsou následně „provazovány“ tři základní režimy tření:

 

·      Hydrodynamický režim tření

·      Smíšený režim tření

·      Hraniční režim tření 

Hydrodynamický režim tření 

V hydrodynamickém režimu tření má být povrch skluznice a povrch sněhové pokrývky zcela oddělen „silným“ vodním filmem. Produkce další „vody“ a tedy nárůst tloušťky vodního filmu v důsledku třecího tepla mezi povrchem skluznice a povrchem sněhové pokrývky jsou považovány za nežádoucí či negativní jev. Tvar křivky na obrázku č. 2 zobrazující závislost koeficientu tření na tloušťce vodního filmu naznačuje, že s narůstající tloušťkou vodního filmu narůstá rovněž koeficient tření, nicméně i při maximálních v grafu zohledněných tloušťkách vodního filmu je COF výrazně nižší než tam, kde se žádný vodní film nevyskytuje, tedy v hraničním režimu tření. V hydrodynamické režimu tření tedy teorie třecího tepla „vysvětluje“ nárůst tření, tedy vyšší COF, tedy horší skluzné vlastnosti tím, že tepelná energie vytvářená třením produkuje další vodu a tím zvyšuje tloušťku vodního filmu, narůstající tloušťka vodního filmu pak zvyšuje tření, tedy zpomaluje lyži, zhoršuje skluz. Tření = třecí teplo, třecí teplo = více vody, více vody = silnější vodní film, silnější vodní film = horší skluz.

 

Je tomu ale opravdu tak?

 

Trochu ano, ale více ne!

 

Na úvod je nutné říci, že nejnovější výzkumy a měření ukazují, že právě v hydrodynamickém režimu tření jsou koeficienty tření absolutně nejvyšší, jsou dokonce výrazně vyšší než v tzv. hraničním režimu tření, tedy na vodě lyže jednoduše nejedou, nebo jedou velmi špatně… Každý z nás si jistě vybaví zkušenost, když ve vysoké rychlosti vjel z tvrdé umrzlé stopy ve stínu do měkkého mokrého sněhu na osluněných partiích tracku či sjezdovky, jeden má v tu chvíli co dělat, aby to ustál bez pádu.

 

Dalším omylem je produkce vody způsobená třecím teplem. V hydrodynamickém režimu jsou oba povrchy opravdu velmi často zcela odděleny vodním filmem. Ačkoli je voda špatný lubrikant, neprodukuje skluz po vodním filmu a s ním spojené tření žádné závratné množství tepelné energie. Za vysoké hodnoty koeficientu tření odpovídají zjevně jiné efekty.

 

Zkrátka a dobře není výskyt vodního filmu mezi oběma povrchy, tedy povrchem sněhu a povrchem skluznice způsoben třecím teplem, nýbrž přirozeným táním sněhu a ledu při teplotách vzduchu nad nulou. Jak již víme z článku o metamorfózách sněhu, ustálí se teplota sněhu při teplotách vzduchu nad bodem mrazu na nule a na nule zůstává tak dlouho, dokud se nerozpustí poslední kousek ledu, pak začne teplota vody pozvolně stoupat.

 

Bez ohledu na druh sněhu začínají tát a přecházet z pevného do kapalného skupenství nejprve nejsubtilnější tvary sněhových krystalů nebo zrn. Vzniklá „volná“ voda nejprve vyplňuje vzduchem vyplněné prostory mezi pevnými částicemi. Čím hustší sníh, tím méně vzduchových kavit uvnitř sněhové pokrývky a tím rychleji začne proces tání vytvářet vodní film přímo na povrchu sněhu, tedy stopy.

 

Např. u starého hrubozrnného sněhu tvořeného zpravidla velkými zakulacenými sněhovými zrny navzájem provázanými tzv. můstky či krčky, začínají při teplotách vzduchu nad nulou roztávat nejprve můstky a krčky a následně povrch ledových zrnek. Prostor mezi jednotlivými zrnky začne být vyplňován vodou a postupujícím procesem tání začnou jednotlivá zrna jaksi „plavat“ ve vodním „láku“. Zde již zpravidla mluvíme o velmi mokrém či zvodnělém sněhu, plném volné vody a zpravidla také nečistot.

 

Vodní film mezi skluznicí lyže a povrchem sněhu se buď na povrchu stopy přímo nachází, nebo je voda při skluzu lyže vytlačována k povrchu a následně skluznicí roztahována do délky a do šířky.

 

Co ale způsobuje ony vysoké hodnoty koeficientu tření právě za mokrých podmínek s výskytem vodního filmu?

 

Víme, že hodnoty koeficientu tření jsou za mokra, tedy za přítomnosti vodního filmu zdaleka nejvyšší, a to napříč všemi podmínkami, na kterých se lyžuje. Na vodě to prostě nejede!

 

Nabízí se velmi jednoduchá odpověď: voda je špatný lubrikant a neklouže / nejede. Tato odpověď si bohužel protiřečí s vysvětlením, proč jsou koeficienty tření v tzv. smíšeném režimu, tedy za situace, kde se skluz odehrává dílem na vodě a dílem na pevných částech sněhové pokrývky, extrémně nízké.

 

Pokud by za vysoké koeficienty v hydrodynamickém režimu zodpovídaly pouze a jenom špatné lubrikační vlastnosti vody, pak by se tyto špatné lubrikační vlastnosti musely zákonitě projevit i ve smíšeném režimu.

 

Další možná odpověď jsou sací síly, kapilární krčky a smykové síly uvnitř vodního filmu. Vodní film se má tendenci přisávat k hladkému povrchu skluznice, při následném oddálení povrchu skluznice se mají vytvářet kapilární krčky mezi oběma povrchy, které brzdí, než prasknou. Vedle toho mají uvnitř kapaliny, na jejímž povrchu se odehrává skluz pevného tělesa, tedy lyže, působit smykové či střižné síly, které opět brzdí.

 

Dlouho se myslelo, že právě hrubé a hluboké vzory struktur určené pro mokré až velmi mokré podmínky zodpovídají za to, že tyto sací, kapilární a smykové síly zvyšující tření, a tedy zhoršující skluzné vlastnosti lyží za mokrých podmínek, mohou být omezovány právě a díky hrubým a hlukovým strukturám. Hluboké a široké drážky měly zabraňovat tvorbě velkoplošných kapilárních krčků. 

 

Aktuální četné výzkumy a testy však ukazují, že pozitivní efekt tzv. hrubých struktur za mokrých podmínek není zdaleka tak přímočarý, jak bylo po mnoho let tradováno, což zároveň oslabuje význam sacích sil a kapilárních krčků pro vysoké hodnoty COF za mokrých podmínek.

 

Jinou odpověď na otázku, proč lyže za mokra nejedou, lze hledat v kontaktní ploše. Za mokrých podmínek se skutečná plocha skluznice, u běžeckých lyží např. 4,5 x 180 cm = 810 cm2, u sjezdových lyží např. 10 x 180 cm = 1800 cm2, rovná více či méně kontaktní ploše. Kontaktní plocha je tedy v důsledku přítomnosti vodního filmu maximálně možná, či extrémní. Pro srovnání si uveďme velikost skutečné kontaktní plochy mezi skluznicí a sněhem za podmínek tzv. hraničního režimu tření, která odpovídá přibližně 1% celkové plochy skluznice, u běžeckých lyží tedy cca 8 až 10 cm2, u sjezdových lyží pak cca 18 až 20 cm2.

 

Extrémní kontaktní plocha představuje extrémní potenciál pro interakce mezi oběma povrchy, a právě v extrémní ploše a v extrémním množství vzájemných interakcí je – dle našeho názoru – nutné hledat příčiny oněch extrémních hodnot COF za mokrých podmínek, tedy skutečnou odpověď na otázku, proč lyže za mokra nejdou!

 

O jaké interakce se jedná, jak působí a proč mají tak velký vliv na skluz lyží, proč právě vosky s fluorem zásadně zlepšovaly skluz za mokra? Tak to vše si povíme zase někdy příště 

 

 

 

 

 

 

 

 

Teorie skluzu, část I. - slepé uličky

 Teorie skluzu – část I., slepé uličky 

 

Abychom mohli správně provádět servis lyží pro zlepšení skluzných vlastností na sněhu či ledu, měli bychom – vedle mnoha dalších znalostí, např. těch o sněhu a vlivech počasí, těch o skluznicích a jejich složení, těch o vlastnostech lyží a způsobu přenášení zatížení a silových účinků od lyžaře, přes stavbu lyže až po skluznici klouzající po sněhové pokrývce, těch o složení a aplikaci nejrůznějších skluzných prostředků – znát alespoň základní principy, na základě kterých se skluz mezi povrchem skluznice a sněhové pokrývky odehrává.

 

Ano, dnes bude řeč o principech tření mezi povrchem skluznice a sněhové či ledové pokrývky.

 

Na úvod si musíme říci, že bádání a výzkum v této oblasti jsou extrémně komplikované, v důsledku čehož docházelo – a bohužel stále dochází – k četným zjednodušením, v jejichž důsledku nebyly a nejsou informace o podmínkách skluzu mezi lyží a sněhem právě příliš spolehlivé.

 

Na úvod se tedy připomeneme některé ze slepých uliček a omylů.

 

Testování na ledu

 

Většina starších odborných či vědeckých prací popisujících či zkoumajících podmínky skluzu mezi povrchem skluznice a povrchem sněhové pokrývky čerpala svá experimentální data z testů a zkoušek na ledu.

 

Důvod byl a je velmi prostý. Sníh podléhá enormně rychle velmi složitým transformacím, které je velmi složité podchytit. Důvodem je komplexnost sněhové pokrývky, která je tvořena 1) pevnými částicemi, tedy různě velkými a různě tvarovanými sněhovými krystaly a zrny, 2) vzduchovými kavitami o různé velikosti a různého celkového poměru ve sněhové pokrývce, 3) primárně při teplotách vzduchu nad nulou tzv. volnou vodou vyskytující se v prostorech mezi zrny a krystaly nebo přímo na povrchu sněhu, 4) propojujícími či provazujícími prvky, které dílem pružně a dílem křehce provazují a propojují jednotlivé pevné částice do matrice či rastru. 

 

Změny / transformace či metamorfózy sněhové pokrývky pak vedou ke změnám podmínek testů. Testy za proměnlivých zkoušek nejsou validní.

 

Proto se celá řada výzkumníků uchylovala k ledu. Transformace u ledu jsou jednak mnohem pomalejší, jednak se led mnohem jednodušeji reprodukuje. Led je tedy ve srovnání se sněhem velmi stabilní a snadno reprodukovatelný.

 

Dlouho se myslelo, že výsledky z testů a zkoušek prováděných na ledu platí, s drobnými korekcemi pro podmínky na sněhu, vždyť sníh je koneckonců tvořen ledem.

 

Bohužel se ale ukazuje, že tento předpoklad byl velmi nesprávný. Podmínky tření na ledu a sněhu se zásadním způsobem liší, a to tak zásadním způsobem, že informace získané ze zkoušek a testů na ledu jsou pro podmínky na sněhu prakticky nepoužitelné.

 

Testování v laboratořích na malých vzorcích

 

Aby se pro testy a zkoušky zajistily co možná nejpřesnější a nejlépe kontrolované podmínky (teplota vzduchu a sněhu, vlhkost, podíl vody, struktura sněhu / ledu atd.) prováděla se měření v laboratořích na zařízeních zvaných tribometry.

 

Aby však bylo možné měření realizovat v laboratorních podmínkách, bylo nutné reálné lyže (běžecké či sjezdové) zásadním způsobem zmenšit. Vznikly tak vzorky lyží pro laboratorní zkoušky vyrobené ze stejných materiálů jako lyže skutečné (tělo lyže, skluznice, hrany, patka, inserty atd.), nicméně mnohonásobně zmenšené.

 

Bohužel se také ukázalo, že výsledky získané na mini-vzorcích používaných v laboratořích se významně liší od podmínek na skutečných / reálných lyžích. Zkrátka a dobře mini-lyže se na sněhovém či ledovém povrchu chová úplně jinak, než lyže reálné velikosti a tvaru.

 

Zjištění, že výsledky získané v laboratořích pomocí mini-lyží jsou pro praxi a reálný popis podmínek skluzu mezi skluznicí lyže a povrchem sněhu či ledu nepoužitelné, vedlo k zavedení tribometrických zařízení, která umožňují testovat v laboratorních, tedy kontrolovaných a replikovatelných podmínkách reálně lyže. Vznikl tak např. large scale tribometer in Innsbruck umožňující testování skutečných lyží za kontrolovaných a replikovatelných podmínek.

 

Zajíždění stopy

 

Asi největší problém pro replikovatelnost testů prováděných na sněhu (od testů na ledu se na přelomu století začalo upouštět) je tzv. zajíždění stopy, a to jak při testech laboratorních, tak při testech polních.

 

Sníh je látka, která velmi rychle podléhá velmi komplexním transformačním procesům. Zkrátka a dobře sníh se neustále mění a přetváří. Sníh se přetváří a proměňuje také tím, že se ve stopě jezdí. Jinými slovy: druhý pár testovaných lyží již jede v jiné stopě, než ve které jel pár první. Jsou sněhové podmínky, kde jsou transformace povrchu sněhu velmi rychlé a rozsáhlé, existují také sněhové podmínky, které jsou spíše stabilní a změny probíhají spíše pomalu, nicméně změny – rychlé a zásadní nebo pomalé a drobné – probíhají vždy.

 

Zajíždění testovacích stop a jejich proměny vlivem skluzu projíždějících lyží je téma, se kterým je nutné se zjevně smířit.

 

Kontaminace testovacích stop

 

Servisní team jednoho tuzemského národního teamu jezdí pravidelně testovat nové lyže, skluznice a skluzné přípravky do tunelu v Oberhofu, Německo.

 

Po jednom rozsáhlém testování těsně před začátkem sezóny „Rybis“ uvedl, že společně s nimi testovaly ve skluzné stopě další dva teamy, ale že je to „OK“, protože stoupací přípravky se testovaly ve stopě jiné.

 

Když si uvědomíme, 1. že každý přípravek se musí otestovat v několika jízdách, 2. že mnoho přípravků – zvláště liquidů a speederů – drží na skluznici spíše silou vůle, než chemickými vazbami, 3. že každý průjezd více či méně proměnil testovací stopu po tribologické stránce, 4. že desítky až stovky průjezdů, při kterých se do testovací stopy uvolňovaly nejrůznější chemické látky, proměňovaly testovací stopu chemicky i fyzikálně, 5. že servisní team našich biatlonistů nemohl tušit, co v testovací stopě zkouší další teamy, tedy že podstatná část chemických látek, které se do stopy uvolňovaly, byly neznámé, pak mohli kluci šikovní jít raději někam na dobré pivo, neb posezení u vychlazeného Kozlíka s přáteli by bylo zcela jistě mnohem smysluplnější 

 

Závěr

 

Získávání spolehlivých a věrohodných informací o podmínkách skluzu mezi povrchem skluznice a sněhové pokrývky je velmi složité. Nicméně i slepé uličky evoluce jsou pokrokem. Tedy s výjimkou diletantismu v podání českého biatlonového servisního týmu. To je pouze ztráta času a mrhání prostředků 

 

 

 

pondělí 10. června 2024

Jak fungují struktury - teorie abraze

Druhá zásadní teorie objasňující podmínky tření v tzv. hraničním režimu staví do středu zájmu oděr a tvrdost, sníh a led.

 

Provádět laboratorní i polní zkoušky na sněhu je s ohledem na jeho specifické vlastnosti, jako jsou extrémní proměnlivost, enormní tvarová a strukturní pestrost, velmi problematické. Proto se také velká část – zvláště laboratorních – výzkumů provádí na vzorcích ledu, a nikoli sněhu. Výsledky získané na ledu se následně aplikují na sníh.

 

Zdá se, že teorie třecího tepla vyvinutá v oblasti skluzu na ledu (zvláště v oblasti bruslení, závodního sáňkování či bobování) platí pro kontakt ledu s kovovou čepelí, v oblasti skluzu plastové lyže na sněhu však zásadně pokulhává.

 

I přesto, že sníh se skládá z drobných ledových zrnek či krystalů vzájemně provázaných a propojených, má sníh natolik specifické vlastnosti, že výsledky výzkumu prováděné na ledu se ukazují být pro sníh nepoužitelné.

 

Alespoň teorie abraze sněhových krystalů na tyto skutečnosti odkazuje. Teorie abraze sněhových krystalů postuluje, že při teplotách hluboko pod bodem mrazu se zvyšuje tvrdost, ale také křehkost jednotlivých sněhových krystalů či zrn. Jak víme z teorie třecího tepla, dochází v režimu tzv. hraničního tření k přímému kontaktu asperit na povrchu skluznice a sněhové pokrývky. V místě kontaktních bodů působí velký tlak a velké tření. Dle teorie abraze však nedochází k natavování mikroskopických kontaktních míst a k produkci vodního filmu, jak pro kontakt ledu s kovovou čepelí postuluje teorie třecího tepla, nýbrž k odlamování drobných částí křehkých sněhových krystalů či zrn, nebo k vylamování celých zrn ze sněhové mřížky.

 

 

Pokud dochází k odlamování drobných částí sněhových krystalů vlivem tlaku a tření, vyplňují tyto odlomené části sněhových krystalů porézní oblasti sněhové pokrývky. Odlomené části sněhových krystalů, které vyplnily porézní oblasti sněhové pokrývky, jsou extrémně rychle integrovány bleskurychlými sitračními procesy, a to v řádu zlomků vteřin. Jakmile jsou integrovány do sněhové pokrývky, dochází k jejich uhlazování dále probíhajícím skluzem a třením.

 

Pokud dochází k vylamování celých zrn ze sněhové mřížky, umožňují vylomená sněhová zrnka valivé tření mezi oběma povrchy, a to do okamžiku, než dojde k jejich zatlačení do porézního povrchu sněhové pokrývky. Jakmile jsou vylomená sněhová zrna zatlačena do porézního povrchu, následují již proces odlamování.

 

Je přirozené, že oba procesy – jak proces odlamování drobných částí ze sněhových zrn, ukládání odlomených částí do porézních oblastí sněhové pokrývky, rychlá integrace a následné uhlazování, tak proces vylamování celých zrn, valivého tření s následným zamáčknutím do porézní oblasti sněhové pokrývky – probíhají paralelně. Předpokládá se, že čím nižší jsou teploty pod bodem mrazu a čím sušší, a tedy tvrdší a křehčí sníh je, tím více narůstá podíl vylamování celých krystalů či zrn.

 

Pokud dochází k vylamování jemnějších či hrubších zrn, které jsou již méně či více zaoblená, dochází bezprostředně k valivému tření. Pokud však dochází k vylamování málo transformovaných zrn až krystalů, pak je jízda na lyžích extrémně náročná. Každý z nás si jistě vybaví skřípající prašen hluboko pod nulou… I jízda na písku by byla pohodlnější 

 

A tady jsme se propracovali k druhému fenoménu, který určuje skluzné vlastnosti za podmínek tzv. hraničního režimu tření, a tím je tvrdost.

 

Tvrdost skluznice je konstantní. U závodních lyží bývá kolem 65 shore D. Tvrdost sněhu je ale proměnlivá. Tvrdost sněhu je přímo závislá na vlhkosti. Čím vyšší vlhkost, tím měkčí sníh, a naopak, čím nižší vlhkost sněhu, tím tvrdší sníh. Vlhkost sněhu pak závisí na teplotě a vlhkosti vzduchu. Čím vyšší teplota a/nebo vlhkost vzduchu, tím měkčí sníh, a naopak, čím nižší teplota vzduchu a/nebo vlhkost vzduchu, tím tvrdší a křehčí sníh.

 

Je-li sníh dostatečně suchý, tedy jsou-li teploty dostatečně nízké, vzroste tvrdost jednotlivých sněhových zrn a krystalů nad tvrdost skluznice. V tento okamžik se sněhové krystaly začnou zarývat do skluznice. Proces „pluhování“ skluznice sněhem probíhá – naštěstí – souběžně s procesem elastické deformace vrchní části sněhové pokrývky, pokud by tomu tak nebylo, lyže by prakticky nemohla klouzat.

 

Co z toho vyplývá? Vedle strukturování ovlivňuje kvalitu skluzu za podmínek tzv. hraničního režimu tření především tvrdost skluznice. Ano, je to tak: čím tvrdší skluznice, tím dále se posune hranice, kdy sněhové krystaly začnou „pluhovat“ skluznici, což je jev, který je doprovázen enormním nárůstem tření.

 



A zda jsme narazili na jeden z hlavních problémů aplikace kluzných vosků pro tzv. hraniční režim tření. Na světě prakticky neexistuje skluzný vosk, po jehož aplikaci by nedošlo ke snížení základní tvrdosti skluznice. Ano, je to tak! Vůbec nejtvrdší HF vosky dosahovaly tvrdosti cca 50 až 55 shore D, zatímco měkké vosky s krátkým molekulárním řetězcem mají tvrdost jen cca 10 až 15 shore D. Tedy jakoukoli aplikací kluzných vosků základní tvrdost skluznice vždy pouze snížíme.

 


Kolegu Kuzmina tedy napadlo, že bude lepší min. pro podmínky hraničního tření žádný skluzný vosk neaplikovat a nesnižovat tak tvrdost základního materiálu skluznice. Bohužel to příliš nefunguje, protože skluzný vosk skluznici nejenom adaptuje na aktuální sněhové podmínky za účelem zlepšení skluzu, nýbrž ji také chrání. Nechráněná skluznice bohužel nefunguje a zde také teorie kolegy Kuzmina naráží tak trochu do zdi!

 

Co s tím? O tom opět příště!

 

sobota 1. června 2024

Jak fungují struktury - teorie třecího tepla...

 Jak ale strukturování za podmínek tzv. hraničního režimu tření funguje? Co jsou základní principy a veličiny, které bychom se měly snažit ovlivňovat?

 

Je to tak, abychom mohli používat správně struktury v tzv. hraničním režimu tření, musíme jim rozumět, musíme chápat – alespoň rámcově, co se to tam dole pod skluznicí děje. Můžeme samozřejmě – podobně jako někteří naši přední odborníci na strukturování – navrhovat nové, mnohovrstvé struktury, měnit hloubku, tvar, přítlak, rychlost posuvu atd., aniž bychom tušili, jaký vliv má který parametr, protože, jak naši mistři brusu sami říkají, je třeba mít velké cíle… Ale vězte prosím, že podobně jako můj čtyřletý syn nemůže řídit provoz jaderné elektrárny, tak nemůže nikdo, kdo nemá ani páru, ani ánung o tom, jak struktury fungují a jaké parametry mají jaký vliv, ani vymyslet, ani vyvinout žádnou dobrou strukturu, bez ohledu na to, zda je to šéf servisu nebo jiný aparátčík kdovíjakého svazu 

 

Jedna z nejrozšířenějších a aktuálně nejvíce preferovaná teorie říká, že základem funkce struktur v tzv. hraničním režimu tření je třecí teplo. Zní to divně, ale smysl to celkem dává. Minimálně pro podmínky mezi ledovým povrchem a ocelovou čepelí. Z předchozího příspěvku víme, že v hraničním režimu tření se oba povrchy, tedy skluznice lyže na straně jedné, a sníh na straně druhé, dotýkají v oblasti asperit, tedy největších nerovností. Víme, že za těchto podmínek je skutečná kontaktní plocha mezi lyží a sněhem velmi malá a že v kontaktních bodech působí relativně vysoký tlak, který je společně s drsností obou povrchů zdrojem relativně velkého tření. A tření vytváří teplo. 

 

Dobře. Ale jak s třením a teplem souvisí strukturování? Díky jemné struktuře se sice zvětší celková plocha skluznice, ale skutečná kontaktní plocha mezi povrchem skluznice a povrchem sněhu se naopak ještě zmenší, rapidně se zmenší počet kontaktních bodů. A protože fyzika funguje i u lyžařů, tak při stejném zatížení (strukturování nemá – Bohu dík – žádný vliv na hmotnost lyžaře) a menší ploše opět vzroste tlak. V důsledku vyššího tlaku se dle této teorie zvýší tření. Vyšší tření vygeneruje více tepla. A? Jednoho teď musí napadnout, že kvůli strukturování jsme dosáhli přesně opačného efektu, než o který jsme usilovali, neb tření se nám naopak zvýšilo, tedy skluz lyže bude ještě horší a energeticky náročnější. To je sice pravda, ale pouze zčásti, respektive pouze v počáteční fázi. Protože – dle teorie třecího tepla – vyšší tření, vyrobí více tepla a větší množství tepla nataví mikroskopické kontaktní plochy. A? A začne se vytvářet vodní film. A? A vodní film začne na straně jedné působit jako lubrikant a jak víme – třeba ze sexu – zvláště tekutý lubrikant prudce snižuje tření, na straně druhé začne vodní film oddělovat povrchy, čímž začne přebírat část zatížení a díky tomu snižovat tlak, a s poklesem tlaku a narůstající lubrikovanou plochou začne prudce klesat tření… A? A lyže lépe klouže!

 

Podle teorie třecího tepla tedy správně zvolené strukturování zlepšuje produkci vodního filmu, a tím umožňuje změnu třecího režimu z tzv. hraničního třecího režimu do tzv. smíšeného režimu tření za chladných podmínek.

 

Obrázek č. 1: a) nenarušený povrch jemnozrnného sněhu, za zmínku stojí krčky či můstky propojující jednotlivá zrna, vznikající primárně při transformaci sněhu, b) v červeném orámování povrch sněhu natavený v důsledku působení tepla (v tomto případě otisk prstu), zdroj: J. H. Lever et. col., Evidence that abrasion can govern snow kinetic friction, Journal of Glaciology, 2018

 

 

Teorii třecího tepla podporuje – mimo jiné – skutečnost, že základní materiál skluznice, tedy UHMWPE je vynikající izolant, tedy kromě toho, že prakticky nevede elektrický proud, velmi špatně přenáší teplo. Pokud tedy teplo neodchází přes – izolující – skluznici směrem do lyže, odchází přes kontaktní body směrem do sněhové pokrývky, kde – jak postuluje teorie třecího tepla – natavuje mikroskopické kontaktní body a generuje vodní film.

 

Z pohledu teorie třecího tepla je naopak problematický grafit, který se ve formě sazí přidává takřka do všech závodních a většiny sintrovaných skluznic lyží. Grafit je totiž nejenom tzv. tuhý lubrikant. Podobně jako tuhý deodorant účinně snižuje pocení, tak grafit coby tuhý lubrikant výborně snižuje tření, a to díky své unikátní lamelární molekulární struktuře.

 

 

Obrázek č. 2: schematické znázornění molekulární struktury grafitu, kde atomy uhlíku v jednotlivých lamelách jsou vázány pevnými vazbami, zatímco jednotlivé vrstvy či lamely mezi sebou pouze velmi slabými silami, zdroj: R. Swar, Effects of Materials and Texturing on Wettability of Ski Base, Degree Project, 2022

 

Zatímco atomy uhlíku v jednotlivých vrstvách jsou vázány velmi pevnými kovaletními vazbami, jsou jednotlivé vrstvy neboli lamely mezi sebou vázány velmi slabými van der Waals silami, díky čemuž lamely po sobě krásně kloužou. Díky svým lubrikačním vlastnostem snižuje tedy grafit tření přímo v mikroskopických kontaktních bodech mezi nerovnostmi na skluznici a nerovnostmi na sněhové pokrývce, čímž částečně oslabuje nárůst třecího tepla v počáteční fázi kontaktu.

 

To ale není hlavní problém grafitu pro teorii třecího tepla. Jak jsme uvedli výše, je grafit nejenom výborný tuhý lubrikant, nýbrž také vynikající vodič. A jako vynikající vodič nejenom vede výborně elektrickou energii (což je u tření na studeném, suchém a krystalickém sněhu velmi preferovaná vlastnost), nýbrž vede také výborně teplo, ano, přesně to teplo, které je v teorii třecího tepla využíváno k natavování kontaktních bodů a produkci vodního filmu. Teplo, které je díky enormně vodivému grafitu odvedeno z místa kontaktních bodů do těla lyže, pak zpomaluje a oddaluje produkci vodního filmu a kontakt mezi skluznicí lyže a sněhem je déle řízen zákony tzv. hraničního tření, a to nikdo nechce…

 

Kromě lubrikačních vlastností a enormní vodivosti má grafit ještě jednu nikoli právě vítanou vlastnost pro podmínky tzv. hraničního režimu tření. Která to je? Grafit je měkký, extrémně měkký. A proto s rostoucím podílem grafitu ve skluznici (u závodních lyží může být podíl grafitu až 20 %) narůstá riziko poklesu tvrdosti skluznice. A právě tvrdost skluznice je ústředním tématem druhé teorie, která vysvětluje efekty strukturování za podmínek slabého vodního filmu neboli tzv. hraničního režimu tření… ale o té si povíme zase někdy příště!

 

 

Obrázek č. 2: tabulka specifikující vlastnosti speciální závodní skluznice pro studené podmínky od společnosti ISOSPORT. Co všechno zde můžeme vyčíst? Obsah sazí, tedy grafitu až 20 %, ale zároveň velmi dobrá tvrdost, tedy 65 shore D, vysoká hustota, tedy 0,985 g/cm3 a slušná schopnost absorbovat vosk 1,8 g/cm2, zdroj: internetová stránka společnosti ISOSPORT VERBUNDTEILE Austria

 

Teorie třecího tepla tedy postuluje, že strukturováním ještě více snížíme plochu kontaktních bodů mezi sněhem a skluznicí, čímž zvýšíme tlak a tření. Toto zvýšené tření má produkovat více třecího tepla. Teplo získané třením pak natavuje kontaktní body a generuje vodní film, vodní film postupně mění režim tření z hraničního na smíšený. Se změnou třecího režimu má prudce klesat tření, a tedy zlepšovat se skluz. Tak tedy dle teorie třecího tepla zlepšuje strukturování skluz v podmínkách hraničního režimu. Ale je tomu opravdu tak???

 

pátek 17. listopadu 2023

V čem byly fluorové vosky tak jedinečné a proč je nebude snadné nahradit?

 V čem byly fluorové vosky tak jedinečné a proč je nebude snadné nahradit?

 

Abychom mohli správně pochopit, v čem byly fluorové vosky při zlepšování kluzných vlastností mezi sněhovou pokrývkou a skluznicí závodních běžeckých lyží tak jedinečné, musíme si nejprve říci něco málo o tom, jak probíhá kontakt mezi skluznicí a sněhem.

 

Pro účely tohoto popisu budeme používat obecnou kategorii „sníh“, a to i přesto, že jsme si dobře vědomi toho, že nic jako „sníh“ neexistuje, existují pouze prakticky nekonečné druhy, typy a varianty sněhových podmínek, ovlivňované celou řadou faktorů jako je např. stáří sněhu, teplota, vlhkost, stupeň zhutnění, typ / velikost či tvar krystalů nebo zrn, podíl volné vody, sluneční svit atd. Např. v jazyce Eskymáků neexistuje žádné obecné označení pro sníh, ale existuje v něm několik tisíc názvů označujících základní kategorie sněhových podmínek. Ale zázraku jménem „sníh“ se budeme věnovat někdy příště…

 

Jak tedy probíhá kontakt mezi skluznicí a sněhem? Nijak. Ano, je to tak. Skluznice lyže a sníh v kontaktu zpravidla vůbec nejsou. Mezi skluznicí závodních lyží, při jejichž použití se  předpokládají strojově upravené lyžařské stopy, a sněhovou pokrývkou se ve většině případů nachází vrstvička vody, neboli vodní film. Kontakt skluznice lyží a sněhové pokrývky mimo strojově upravené stopy je mnohem komplexnější a pro účely našeho povídání o jedinečnosti fluorových vosků nerelevantní fenomén (kdo by taky jezdil s aplikovanými fluorovými vosky ve volném terénu, při jejich cenách), a proto se jím v tomto článku nebudeme zabývat.

 

Ale zpět k našemu tématu: mezi skluznicí závodních lyží a sněhem se ve většině případů nachází vodní film. V závislosti na okolních podmínkách může tento vodní film mít různou tloušťku. Pro účely hodnocení kluzných vlastností mezi skluznicí a sněhem rozlišujeme tři kategorie tloušťky vodního filmu:

 

·      optimální tloušťka vodního filmu, který funguje jako lubrikant mezi dvěma povrchy (povrchem skluznice a povrchem sněhové pokrývky)

·      příliš malá tloušťka vodního filmu, kdy oba povrchy vstupují do dílčího přímého kontaktu

·      příliš velká tloušťka vodního filmu, kdy mezi oběma povrchy oddělenými vodním filmem vznikají tzv. kapilární krčky

 

Velmi jednoduše řečeno se optimální tloušťka vodního filmu vyskytuje při běžných podmínkách vzdušné vlhkosti přibližně při teplotách přibližně - 3 až - 7 stupňů C. Příliš malá tloušťka vodního filmu se vyskytuje přibližně při teplotách pod - 13 stupňů C, kdy vodní film kolem jednotlivých zrn či krystalů je natolik slabý, že nevygeneruje dostatečné množství lubrikantu. Za těchto podmínek se vodní film vytváří až na základě tření mezi skluznicí a sněhovou pokrývkou a jím vytvořené energie a pohyb na lyžích je extrémně náročný. Příliš velká tloušťka vodního filmu vzniká primárně v důsledku tzv. volné vody mezi sněhovými zrny a projevuje se tzv. sacím efektem, který způsobuje maximální možné tření.

 

A protože je třetí kategorie, tedy příliš velká tloušťka vodního filmu pro naše povídání nejpodstatnější, a protože je tření na příliš silném vodním filmu naprosto nejvyšší, ilustrujeme si sílu tzv. sacího efektu na několika příkladech.

 

Je příjemné slunečné počasí na začátku jara, řekněme první polovina března, slunce už příjemně hřeje, ale ve stinných lesních úsecích je sníh ještě pořádně zmrzlý a jede jak čert. Zrovna si to svištíte z kopce dolů po zledovatělé stopě, dole pod kopcem je ale kratší úsek, kam už svítí slunce. Sníh je taky už pořádně mokrý až nasycený vodou. V plné rychlosti vlítnete do vodou nasyceného sněhu… A? Zůstanete stát skoro na místě a málem padnete na hubu  V lepším případě Vás to pěkně rozhodí a jste rádi, že jste to nějak vybrali.

 

Ano, ta neviditelná síla, která Vás z plné rychlosti málem na fleku zastavila, byly neviditelné kapilární krčky neboli sací efekt. Vodní film se přisál k povrchu Vaší skluznice a nechtěl se pustit…

 

Sedíte doma s přáteli, děti u stolu převrhly pití a Vaše žena stůl pohotově otřela mokrou utěrkou od sladkého džusu. Aby omyla sladkou šťávu ze stolu, nechala utěrku dost namočenou a na hladké desce stolu se vytvořil slabý vodní film. Po chvíli jste si na mokrou desku stolu postavil /-a skleničku s vínem. Chcete se napít, ale fuj, sklenička nejde vůbec odlepit od stolu, zaberete a skoro se polijete.

 

Ano, skoro jste se polil /-a, protože Vám skleničku na desce stolu přidržel sací efekt neboli kapilární krčky.

 

Jaké závěry plynou z první části našeho povídání? Největší tření, a tedy nejhorší kluzné podmínky nevznikají na přemrzlém suchém sněhu, jehož krystaly či zrna se přímo zařezávají do skluznice, nýbrž na vlhkém, mokrém či vodou prosyceném sněhu, kdy se mezi jednotlivými krystaly či zrny nachází velké množství volné vody, která vytváří silný vodní film, v důsledku něhož vznikají kapilární krčky a sací efekt, který dělá vše proto, aby nepustil lyži z místa.

 

Když nyní víme, že skluz lyže na povrchu sněhu se ve většině případů odehrává na vodním filmu, musíme se nyní říci něco málo o tom, jak fluorové vosky s tímto vodním filmem interagují, abychom mohli pochopit, proč byly tak jedinečné.

 

Jak tedy fluorové vosky interagují s vodním filmem?

 

·      Fluorové vosky jsou extrémně hydrofobní, tedy vodu-odpuzující, a snaží se tedy vodní film od povrchu skluznice odpuzovat.

·      Fluorové vosky zvyšují tzv. kontaktní úhel mezi vodními kapičkami, které tvoří vodní film, a povrchem skluznice.

·      Fluorové vosky snižují tzv. kontaktní plochu mezi povrchem sněhu a povrchem skluznice.

·      Fluorové vosky zlepšují odpudivost vůči nečistotám obsaženým primárně ve starém mokrém sněhu.

 

Hydrofobie a schopnost nepřijímat nečistoty spolu úzce souvisí a můžeme si je hezky ilustrovat na parketách. Dřevo jako typicky nasákavý materiál se voskuje, aby se chránil proti vodě a nečistotám. Navoskované parkety navíc krásně kloužou, což je tedy u parket – z pohledu dospělých – efekt nechtěný (naši kluci si ale klouzání po navoskovaných parketách v celém bytě parádně užívají), u lyží se ale o zlepšení skluzu snažíme. Hydrofobie tedy zlepšuje skluz na vodním filmu a jde ruku v ruce s odpuzováním nečistot.

 

Mnohem zajímavější a podstatnější jsou ale prostřední dvě vlastností fluorových kluzných vosků.

 

Fluor má tu zvláštní vlastnost, že umí měnit povrchové napětí vody, která se objeví v jeho blízkosti. Tím, že naneseme na povrch skluznice vosky s přídavkem aditiv na bázi fluoru, zajistíme, že u vodního filmu, po kterém – jak již víme lyže klouže – se začne měnit povrchové napětí, v důsledku čehož se z „plochých“ kapiček vody, stanou „kulaté“ kapičky vody, tedy změní se kontaktní úhel, který svírají kapičky vody tvořící vodní film s povrchem skluznice.

 

Tuto skoro až čarovnou vlastnost fluoru si můžeme obrazněji ukázat na chování běžné outdoorové bundy a outdoorové bundy s GORE-TEXem za deště. Při výrobě GORE-TEXu se používala identická látka PFOA/C8, která tvořila základ fluorových kluzných vosků. Pokud dopadne kapka dešťové vody na běžnou bundu, po dopadu se rozplácne a následně ve formě jakési placky pomalu sjede po povrchu dolů (v lepším případě) nebo se do bundy rovnou vsákne (v horším případě).  Pokud tatáž dešťová kapka spadne na bundu s GORE-TEXem vyrobeného za použití PFOA/C8, pak se tato kapička dešťové vody těsně před dopadem zabalí či sroluje do jakési kuličky, která následně hladce sklouzne po povrchu dolů.

 

Fluorové vosky tedy mění vodní film pod skluznicí lyže na jakési kuličky po jejichž vrcholcích lyže klouže.

 

Skluznice lyže klouže po „kuličkách“ mnohem lépe než po „placičkách“, stejně jako „kulaté“ nebo „placaté“ kapičky vody po bundě, ale kuličky také zásadním způsobem zmenšují kontaktní či styčnou plochu mezi lyží a vodním filmem, menší styčná plocha znamená menší tření a lepší kluzné vlastnosti.

 

Když už jsme ale nakousli téma kontaktní plochy, pojďme si o něm povědět trochu více.

 

Na vlhkém, mokrém či velmi mokrém sněhu snižují fluorové vosky kontaktní plochu mezi vodním filmem na povrchu sněhové pokrývky a povrchem skluznice tím, že kapičky vody, které vodní film tvoří, „zakulacují“. 

 

A není nic nového pod sluncem, že fluorové vosky zlepšují kluzné vlastnosti – díky hydrofobii, odpudivosti vůči nečistotám, zvyšování kontaktního úhlu a snižování kontaktní plochy – primárně a především na vlhkém, velmi vlhkém, mokrém, velmi mokrém až vodou nasyceném sněhu. To snad ví úplně každý.

 

Ale fluorové vosky zlepšují kluzné vlastnosti – a to už tak úplně jasné nebývá – také na suchém, ostrém a vysoce abrazivním sněhu. Také zde totiž fluorové vosky snižují kontaktní plochu mezi skluznicí a slabým vodním filmem na straně jedné a ostrými abrazivními sněhovými krystaly či zrny na straně druhé, které se za těchto podmínek dostávají do přímého kontaktu se skluznicí lyže. Za těchto podmínek totiž ostré a vysoce abrazivní sněhové krystaly pronikají přímo do skluznice. Díky tomu, že fluorové vosky jsou výrazně tvrdší než jakékoli běžné hydro-karbonové vosky, a díky tomu, že při správném provázání se základním materiálem skluznice zvyšují dokonce i tvrdost tzv. kluzné vrstvy sestávající z UHMWPE a vlastního kluzného vosku, zabraňují či alespoň omezují pronikání ostrých a vysoce abrazivních zrn do povrchu skluznice, čímž také snižují kontaktní plochu a tím celkové tření.

 

Při správném použití tedy fluorové vosky zlepšují kluzné vlastnosti také na suchém, přemrzlém, agresivním a vysoce abrazivním sněhu.

 

V čem jsou fluorové kluzné vosky tedy tak jedinečné? Jedinečnost fluorových vosků spočívá v takřka neuvěřitelné kombinaci extrémní hydrofobie, schopnosti měnit povrchové napětí vody, zvyšovat tvrdost skluznice a snižovat kontaktní plochu, čímž enormně zlepšují kluzné vlastnosti na vlhkém a mokrém sněhu a pomáhají snížit tření na suchém, agresivním a vysoce abrazivním sněhu.

 

Proč je nebude snadné nahradit? Protože aktuálně neexistuje známá chemická látka, která by nabízela takovouto kombinaci skluz zlepšujících vlastností mezi vodním filmem na povrchu sněhové pokrývky na straně jedné a UHMWPE na straně druhé.

 

Ale netruchleme, zatímco mezi chemickými látkami se alespoň zatím na lepší časy neblýská, vzbuzuje hned několik organických látek velkou naději na ještě lepší kluzné vlastnosti, v ještě širším pásmu použití, a navíc bez balastu ekologické a zdravotní zátěže!

 

Na co se můžeme těšit příště:

Co je Achillova pata fluorových vosků? Co asi výrobci nechtěli, abychom věděli?

neděle 5. listopadu 2023

Mýty a omyly při strukturování, aneb jak správně používat manuální struktury - část II. silný vodní film

Mýty a omyly při strukturování, aneb jak správně používat manuální struktury

 

Část II. – mýty, omyly a paradoxy strukturování na mokrém sněhu

 

Začneme silným vodním filmem, který vytváří tzv. sací efekt, tedy kapilární krčky, které mají tendenci přisát se k hladkému povrchu skluznice a nepustit se.

 

Silný vodní film se vytváří v okamžiku, kdy se mezi jednotlivými sněhovými zrny či krystaly vytváří tzv. volná voda, tedy ve chvíli, kdy vodní film na povrchu jednotlivých sněhových zrn či krystalů je natolik silný, že se začíná „přelévat“ do volného – vzduchem vyplněného – prostoru mezi sněhovými zrny či krystaly.

 

Za těchto podmínek nám výrobci lyžařských vosků a servisních přípravků doporučují používat hrubé struktury. Dle jejich názoru umožňují tyto hrubé struktury, aby silný vodní film, který se mezi skluznicí lyže a sněhovou pokrývkou v dané chvíli nachází, lépe či snadněji „odtékal“ díky hrubým širokým drážkám. Tímto rychlejším a efektivnějším „odvodněním“ má být zlepšen skluz na silném vodním filmu. Klíčem k lepšímu skluzu je tedy dle výrobců vosků a přípravků lepší odtékání a efektivnější odvodnění.

 

Kam se ale poděl sací efekt, který je hlavní „brzdou“ při skluzu na silném vodním filmu?  Že by odtekl společně s efektivněji odvedenou vodou? Asi všichni tušíme, že toto nebude to správné vysvětlení.

 

Sací efekt nikam nezmizel, kapilární krčky se u silného vodního filmu mají tendenci přisávat k hladkému povrchu a držet lyži přisátou. A právě hrubá struktura, tedy široké a hluboké drážky zabraňují vytváření velkoplošných kapilárních krčků mezi povrchem skluznice a povrchem sněhové pokrývky tím, že hladkou plochu skluznice rozdělují ostrými hlubokými vrcholy. Díky tomu pak dochází k zásadnímu omezení sacího efektu, a tím k zásadnímu zlepšení kluzných podmínek. Klíčem k lepšímu skluzu na silném vodním filmu je tedy zabraňování tvorby velkoplošných kapilárních krčků.

 

U sněhu ale nebývá – bohužel, nebo možná bohudík – nic úplně jednoduché. Vytváření velkoplošných kapilárních krčků nejlépe zabraňují lineární struktury, které v podélném směru rozčleňují – jinak hladký – povrch skluznice na drážky a vrcholy, které nejsou kapilární krčky schopné překonat. Důležitá je přitom nejenom šířka a více, ale také hloubka. Čím širší a hlubší, tím efektivnější překážka. Pro klasický styl žádný problém, pro bruslení jsou však hluboké a široké lineární drážky nevhodné, a proto je zde nutné hledat kompromis, kterým mohou být hrubé šípovité struktury. Ty nezabraňují tvorbě velkoplošných kapilárních krčků zdaleka tak efektivně, jsou ale mnohem výhodnější pro šípovitý pohyb při volném stylu.

 

Struktury na mokrém sněhu u lyží pro klasický styl

 

Čím širší a hlubší drážky, tím efektivnější překážka pro tvorbu kapilárních krčků, a tím lepší skluz na silném vodním filmu u klasického stylu. Je tomu opravdu tak? Je i není! Neboli někdy je, ale jindy není 

 

O tom, kdy tomu tak je, a kdy tomu tak není, rozhodují dvě veličiny: velikost sněhových zrn či krystalů jako veličina číslo jedna a soudržnost či nesoudržnost sněhových zrn či krystalů jako veličina číslo dva.

 

Na vysoce soudržné sněhové pokrývce, kdy jsou jednotlivá sněhová zrna i přes velké množství volné vody silně provázána, nehraje velikost zrn žádnou zásadní roli, a platí zde: Čím širší a hlubší drážky, tím efektivnější překážka pro tvorbu kapilárních krčků, a tím lepší skluz na silném vodním filmu u klasického stylu. Tyto sněhové podmínky se mohou vyskytovat na silně zledovatělém sněhu, který náhle a prudce povolil. Sníh už obsahuje velké množství volné vody, ale sněhovou pokrývku tvoří stále spíše ledové plochy než jednotlivá – byť velká a oblá – sněhová zrna.

 

Jsou-li sněhová zrna nesoudržná, tedy volně pohyblivá, ale jsou-li velká a oblá, pak i zde platí: Čím širší a hlubší drážky, tím efektivnější překážka pro tvorbu kapilárních krčků, a tím lepší skluz na silném vodním filmu u klasického stylu. Max. rozteč vrcholů u nejhrubší struktury jsou 3 mm, což je naprosto běžná velikost jednotlivých zrn u tzv. hrubozrnného sněhu, kdy jednotlivá velká oblá sněhová zrna plavou v jakémsi láku tzv. volné vody. Jednotlivá zrna jsou tedy dostatečně velká na to, aby i přes svou značnou pohyblivost neucpala široké a hluboké drážky, které by v důsledku toho přestaly plnit svoji funkci při zabraňování tvorby velkoplošných kapilárních krčků, ale navíc by bylo znemožněno i výrobci vosků a servisních přípravků vyzdvihované odvádění vody. K těmto sněhovým podmínkám patří např. klasické jarňáky, tedy hrubozrnný sníh s velkými oblými zrny a velkým podílem volné vody.

 

Mnohem napínavější začne být celá situace ohledně hrubých struktur, tedy širokých a hlubokých drážek pro silný vodní film u mokrého sněhu ve chvíli, kdy se začne průměrná velikost sněhových zrn zmenšovat. A jsou-li tato drobnější zrna navíc ještě dostatečně pohyblivá, pak je s hrubými strukturami na silném vodním filmu na průser zaděláno. Drobnější pohyblivá sněhová zrna velmi rychle ucpou široké a hluboké drážky a jakýkoli dobrý skluz je v hajzlu! Jediná možnost, jak zabránit této tragédii, je použít na starém mokrém jemnozrnném sněhu takovou strukturu, jejíž rozteč mezi jednotlivými vrcholy je menší, než je průměrná velikost jednotlivých sněhových zrn, aby nedošlo k ucpání či zanesení drážek, a to bez ohledu na to, zda jemnější struktura ne zcela efektivně zbraňuje tvorbě velkoplošných kapilárních krčků.

 

Pokud jde zmenšování sněhových zrn ruku v ruce se soudržností, a tedy nepohyblivostí sněhových zrn, pak stojí za to riskovat a zvolit i na jemnozrnném mokrém sněhu hluboké a široké drážky, které efektivně zabrání velkoplošným kapilárním krčkům a dobře odvedou vodu. Tato situace může např. nastat, když do hutného a velmi hustého jemnozrnného sněhu začne náhle pršet, ale sníh se ještě nerozmočil natolik, aby se vazby mezi jednotlivými zrny rozpustili.

 

Naopak opravdu krušno začne být, pokud je efekt drobných sněhových zrn, tedy vlastně krystalů zesílen ostrými hranami nového krystalického sněhu, který je ale dostatečně mokrý na to, aby vytvářel silný vodní film. Ostré sněhové krystaly bezpečně ucpou i relativně jemné drážky, které už budou pouze a jenom drhnout. V takové situaci je lepší nechat skluznici úplně bez drážek a se silným sacím efektem bojovat raději jinými prostředky. Tyto sněhové podmínky mohou nastat, když do nového čerstvého sněhu začne náhle pršet.

 

Nový krystalický sníh, který se nelepí a vlivem přejíždějících lyží se neuhlazuje do skleněné až ledovaté stopy, se – bohudík – vyskytuje opravdu velmi zřídka!

 

Struktury na mokrém sněhu u lyží pro volný styl

 

Problematika struktur na mokrém sněhu, tedy na silném vodním filmu u lyží pro volný styl se řídí stejnými fenomény a veličinami jako problematika struktur na silném vodním filmu u lyží na klasický styl, avšak s tou výjimkou, že paleta nástrojů, tedy struktur, kterými můžeme na danou problematiku reagovat je mnohem menší.

 

Tato skutečnost, tedy menší paleta možných struktur nám umožňuje následující generalizaci: kluzné podmínky u lyží na volný styl budou na silném vodním filmu vždy o něco horší než u lyží na klasiku!

 

Hrubé lineární struktury jsou u lyží na volný styl nepoužitelné. U středních lineárních struktur je použití u lyží na volný styl nutné dobře testovat, stejně jako použití hrubých šípových struktur. Zbývají nám tedy střední a jemné šípové struktury a těmi žádnou díru do světa – tedy alespoň co se zlepšení kluzných podmínek na silném vodním filmu pro lyže na volný styl – neuděláme!

 

A na co se můžeme těšit příště? Podíváme se na některé mýty a paradoxy strukturování na slabém vodním filmu.

 

 

 

 

 

 

 

 

 

 

 

 

neděle 12. února 2023

Jsou fluorové vosky opravdu tak skvělé?

Jeden z předních odborníků na skluz, pan prof. Scherge, sepsal v roce 2021 krátký příspěvek k hlavním výhodám fluorových kluzných vosků, ke kterým dle prof. Schergeho patří:

  • snižují kontaktní úhel mezi vodním filmem a povrchem skluznice, což zlepšuje kluzné vlastnosti především na mokrém sněhu s velkým množstvím volné vody, ale i všude tam, kde lyže klouže primárně po vodním filmu
  • snižují kontaktní plochu mezi skluznicí a povrchem sněhovým zrn za velmi chladného a vysoce abrazivního sněhu tím, že zvyšují tvrdost skluznice a snižují tím, pronikání ostrých hran do skluznice
  • účinnost fluorových vosků - zvláště tzv. čistých fluorů - je tak vysoká, že “upozaďují” či “devalvují” ostatní jemnější prostředky pro zlešování skluzu jako např. kartáčování, strukturování.
Pojdmě se nyní na jednotlivá tvrzení, proč mají být fluorové vosky tak skvělé, podívat trochu detailněji a komplexněji. Zcela přitom vynecháme hledisko zdravotní a ekologické, a sice že fluorové vosky ohrožují životy a zdraví všeho živého.

Snižování kontaktního úhlu mezi vodním filmem a povrchem skluznice

Souhlasíme, toto je primární efekt kluzných vosků na bázi fluoru. Možná bychom jen přidali, že fluorové vosky zlepšují také odpudivost kluzné vrstvy vůči nečistotám, což za podmínek mokrého sněhu s vysokým podílem volné vody bývá už také důležité téma.

Fluorové vosky bychom i za těchto podmínek ale vždy kombinovali se správným strukturováním a kartáčováním. Proč? Kvůli problematické životnosti fluorových vosků, zvláště tzv. čistých fluorů.

Snižování kontaktní plochy mezi sněhovými zrny a povrchem skluznice

Zvyšování tvrdosti skluznice pomocí fluorových vosků je spíše problematické. Jediný pozitivní efekt je v tom, že skluznice je díky spojení s tvrdým kluzným voskem odolnější vůči abrazi způsobované tvrdými a ostrými sněhovými zrny. Zvýšení tvrdosti skluznice však lze dosáhnout i hydrokarbonovými vosky bez přídavku aditiv na bázi fluoru. U extrémně tvrdých vosků navíc nastává problém se zpětným obnažováním zalité struktry, přičemž správná a kvalitní struktura má za těchto podmínek pravděpodbně větší význam než tvrdý fluorový vosk. Tvrdost skluznice navíc zvyšují pouze LF a HF fluorové vosky, čisté fluory mají prakticky nulovou odolnost vůči abrazi.

Devalvace ostatních prostředků pro zlepšování skluzu tzv. čistými fluory

Ano, zvláště tzv. čisté fluory jsou oproti ostatním prostředkům pro zlepšení skluzu zvláště na vlhkém či mokrém sněhu extrémně efektivní, s tím se nedá, než souhlasit. Problém však je životnost. Je poměrně pravděpodobné, že tzv. čisté fluory vydrží na skluznici několik set metrů, možná třeba kilometr a konec, nic, je pryč... A má opravdu smysl na skluznice nanášet za drahé peníze něco, co tam vydrží tak krátce? To už si musí srovnat v hlavě každý sám...

Za nás není fluorových vosků škoda, naopak jsme rádi, že zákaz vyloučil jejich použití alespoň z vrcholových soutěží. Do servisu lyžÍ se bude moci vrátit řemeslo a opravdový um.