Zobrazují se příspěvky se štítkemtření. Zobrazit všechny příspěvky
Zobrazují se příspěvky se štítkemtření. Zobrazit všechny příspěvky

čtvrtek 30. ledna 2025

ISATIN, část III - často kladené otázky

 ISANTIN pro dokonalý skluz

 

Ačkoli se skluzné přípravky ISANTIN nabízí aktuálně k prodeji a autor článku se se značkou ISANTIN spojil i obchodně, je ISANTIN mnohem více než výrobek a mnohem více než business. Skluzné prostředky ISANTIN představují zcela nový přístup, zcela novou technologii v servisu skluznic lyží pro zlepšení skluzu. Autor článku se neobává tvrdit, že ISANTIN představuje změnu celého paradigmatu.

 

Nejrůznější technologické novinky ve světě vosků - včetně fluoru, molybdenu, grafitu, zinku atd. - byly vždy pouze obměny a alternace starého konceptu, neboli starého kopyta, chcete-li. Vedle nekonečných variací starého kopyta vychází svět vosků ze zastaralých terorií skluzu, které byly navíc vyvinuty pro podmínky na ledu, a nikoli na sněhu, v důsledku čehož na sněhu jednoduše nefungují. Svět vosků je něco jako dinosaur, který měl už dávno vymřít, ale díky své velikosti a rozšířenosti stále přežívá.

 

ISANTIN, vedle toho, že je na rozdíl od zinku, molybdenu, grafitu či fluoru a dalším svinstvům šetrný k naší jediné modré a zelené planetě, vychází z principů a zákonitostí, které se mezi sněhovou pokrývkou na straně jedné (bez ohledu na to, čím a jak je tvořena) a skluznicí lyže tvořené polymery s nejrůznějšími přísadami a doplněné nejrůznejšími strukturami, skutečně odehrávají, a to na úrovni NANO, MIRKO i MAKRO. Možná se může ještě občas stát, že za určitých sněhových a teplotních podmínek, nebo v omezeném úseku trati budou voskoví dinosauři lepší (koneckonců svět se jejich vývoji a zdokonalování věnoval intenzivně posledních 50 let), nicméně změnu paradigmatu, kterou ISANTIN nastavuje, již není možné ani zastavit, ani zpochybnit, ani vzít zpět... ISANTIN je tu, změna paradigmatu se udála a bude měnit svět servisu lyží... Můžeme s tím nesouhlasit, můžeme proti tomu protestovat, a nebo ISANTIN začneme jedoduše používat!

 

ISANTIN je malý krok pro člověka, velký krok pro lidstvo, minimálně to lyžující...

 

Chtěli byste ISANTIN vyzkoušet?

 

Pak pro Vás máme několik rad a doporučení…

 

Je možné ISANTIN aplikovat na nové lyže?

 

Ano, nové lyže s nepoužívanou skluznicí jsou naprosto ideální. Před aplikací se pouze ze skluznice odstraní ochranný vosk a nečistoty. Je celkem jedno, o jaký druh lyží se jedná, důležité je, že lyže mají skluznici, která není poškozená, tedy je v pořádku, což se u nových lyží dá více, než předpokládat! Na lyžích s lepší skluznicí (zpravidla UHMWPE) bude ISANTIN držet o něco lépe než na levnějších druzích skluznic (HDPE, HMWPE, cross-linked HDPE atd.), ale žádný strach, i na levnějších skluznicích bude ISANTIN držet mnohonásobně lépe než jakýkoli skluzný vosk.

 

Drží ISANTIN i na kovových hranách sjezdovek?

 

Ano, ISANTIN se aplikuje a drží i na kovových hranách. Samozřejmě životnost na oceli není tak vysoká jako na polymeru, a to i s ohledem na extrémní namáhání hran, ale ISANTIN se na molekulární úrovni váže i na ocelové povrchy.

 

Jak se to s mohérovými pásy a s aplikací ISANTIN?

 

Běžecké lyže na klasiku mají dnes ve většině případů tzv. mohérový pásek, který nahrazuje stoupací vosky. ISANTIN jako skluzný přípravek se aplikuje do skluzných zón, tedy na přední a zadní část lyže. Ve střední části lyže, kde je vlepený mohérový pásek, se aplikuje speciální druh přípravku ISANTIN, a sice ISANTIN S, který zachová stoupací funkci mohérového pásku, zároveň ale zásadním způsobem zlepší jeho skluzné vlastnosti a zabrání jakémukoli namrzání. Lyže s mohérem tedy budou i nadále zajišťovat spolehlivý odraz, ale navíc výborně pojedou!

 

Je možné ISANTIN aplikovat na stoupací pásy pro FREE-RIDE?

 

Milovníci FREE-RIDE budou ISANTIN milovat! Tedy přesněji řečeno ISANTIN S. Pokud na své stoupací pásy aplikují před výstupem ISANTIN S, bude pás stoupat, ale zároveň nebude lepit a namrzat, naopak bude přímo klouzat… Jediná nevýhoda je spotřeba! Pás je dlouhý a široký a díky chloupkům má obrovskou plochu. A na celou tuto obrovskou plochu se musí ISANTIN S nanést! Kdo to ale jednou zkusí, už nebude chtít jinak 

 

Je možné ISANTIN aplikovat i na strukturované skluznice?

 

Ano, ISANTIN je možné aplikovat jak na hladké, tak na strukturované skluznice. Pro strukturované skluznice je ISANTIN – na rozdíl od běžných vosků – naprosto ideální!

 

Proč je ISANTIN ideální pro strukturované skluznice?

 

ISANTIN vytváří na povrchu skluznice skluznou mezi-vrstvu. Tloušťka této mezivrstvy je cca 1 až 2 mikrometry. Struktury sjezdových i běžeckých lyží mají hloubku od cca 15 až 20 mikrometrů do cca 100 až 120 mikrometrů a šířku od cca 100 mikrometrů do několika milimetrů (horní hranice samozřejmě platí pro běžecké, a nikoli sjezdové lyže). Z uvedených hodnot je tedy zjevné, že ISANTIN dokonale kopíruje i ty nejjemnější struktury!

 

Proč je ISANTIN pro strukturované skluznice vhodnější než vosky?

 

ISANTIN vytváří na povrchu skluznice skluznou mezi-vrstvu, která je na straně jedné velmi pevně navázána na nejsvrchnější vrstvu skluznice, na straně druhé je velmi soudržná, odolná vůči abrazi, tvrdá, hladká… Skluzná mezivrstva ISANTIN je tak odolná, že finální rozlešťování jednotlivých destiček do jednolité vrstvy se provádí bronzovým či mosazným kartáčem s jemným vlasem. Jemné vlásky mosazného kartáče se dostanou i do těch nejjemnějších detailů a tvarů struktury, kde destičky ISANTIN rozleští do jednolité vrstvy, zatímco vosky jsou při odstraňování tzv. přebytečného vosku ze struktury pomocí mosazných či ocelových kartáčů velmi často odstraněny zcela. Ano, často dojde k vykartáčování jak přebytečného, tak chtěného vosku, jelikož vlásky kartáče jaksi neumí rozlišit, které je ten přebytečný, a který je naopak ten chtěný 

 

Za jakých podmínek funguje ISANTIN nejlépe? 

 

Díky hladké, tvrdé, vodivé, oděru-vzdorné mezivrstvě, kterou ISANTIN na povrchu skluznice vytváří, je ISANTIN naprosto ideální pro studené, tvrdé, suché, abrazivní a agresivní podmínky… Čím horší podmínky, tím lépe ISANTIN funguje! Tam, kde ani ty nejtvrdší vosky nemají žádnou šanci odolávat abrazi, si ISANTIN jen vrní… 

 

Znamená to, že ISANTIN je vhodný pouze pro studené a abrazivní podmínky a za mokrých a znečistěných podmínkách nefunguje?

 

Nikoli… ISANTIN je díky hladkému a tvrdému povrchu také enormně špíno-odpudivý, což je velmi výhodné za mokrých a zpravidla špinavých podmínek. ISANTIN však není zdaleka tak hydrofobní, tedy vodo-odpudivý, jako bývaly např. fluorové vosky. Pro mokré podmínky je tedy nutné použít kombinaci ISANTIN B + ISANTIN W pro zlepšení hydrofobie! V polních testech se však ukazuje, že ISANTIN R zvládá velmi dobře i vodu!

 

Je možné ISANTIN aplikovat i na starší lyže?

 

Ano, ale… A těch ALE bude více!

 

První ALE = před aplikací ISANTIN nechte skluznici přebrousit

 

Pokud máte straší lyže a nejste si úplně jistí, zda nejsvrchnější vrstva skluznice, na kterou se ISANTIN váže, je stále „zdravá“, pak Vám nemůžeme doporučit nic jiného, než nechat lyže před aplikací ISANTIN přebrousit! Ano, slyšíte správně, přebrousit! Přebroušením, které se zpravidla provádí v tloušťce cca 0,1 mm tedy cca 100 mikrometrů pod úrovní nejhlubších částí struktury, se jednoduše zbavíte celé původní svrchní vrstvy skluznice. Existuje riziko, že skluznice je poškozená i do větší hloubky, ale pokud jste na lyže neaplikovali zpravidla fluorové přípravky s vysokými zažehlovacími teplotami (více než 140 stupňů C), pak není toto riziko příliš velké.

 

Zkrátka a dobře přebroušení je nejlepší příprava skluznice na aplikaci ISANTIN u starších lyží, kde si nejste jistí kvalitou svrchní vrstvy skluznice.

 

Druhé ALE = nejčastější způsoby poškození svrchní vrstvy skluznice

 

Svrchní vrstvu skluznice nejčastěji poškozují: 1) vysoké zažehlovací teploty (více než 140 stupňů C), 2) oxidace, 3) UV záření, 4) agresivní mechanické zásahy (např. agresivní ROTO-kartáče), 5) dlouhodobé používání (je to stejné jako s pneumatikami) atd.

 

Pokud z nějakého důvodu nemůžete nebo nechcete nechat svoje lyže přebrousit, pak prosím věnujte zvýšenou pozornost následujícím doporučením. Pokud totiž skluznici nenecháte přebrousit a necháte ISANTIN aplikovat na poškozenou svrchní vrstvu skluznice, může se stát, že se ISANTIN nenaváže vůbec, nebo se naváže špatně a velmi rychle se ojede… A Vy budete naštvaní a zklamaní…

 

Třetí ALE = pověra o tom, že přebroušené lyže už nikdy nepojedou tak dobře

 

Pokud patříte do skupiny těch, kteří primárně nechtějí nechat skluznici svých lyží přebrousit, protože Vás nějaký „odborník“ přesvědčil, že pokud si lyže necháte přebrousit, tak už nikdy tak dobře nepojedou, pak vězte, že…

 

Skluznice lyží je polymer obohacený nejrůznějšími aditivy. Pokud je skluznice černá, pak se zpravidla jedná o saze, grafit a/nebo grafém. Vedle tzv. skluzných aditiv se do skluznic přidávají ještě strukturální aditiva, jako jsou anti-oxidanty, UV-filtry, anti-statika, barviva atd. Bez ohledu na konkrétní složení skluznice degraduje, aniž by se s ní muselo cokoli dělat. Prostě jako většina výrobků (např. pneumatik) stárne, oxiduje, některá aditiva se z polymeru časem samovolně uvolňují, na skluznici, zvláště tu černou, působí viditelné i neviditelné složky slunečního záření… Podobně jako pneumatiky uložené ve sklepě stárnou a degradují, aniž by se používaly. Jakmile lyže začnete používat, tedy na nich začnete lyžovat, koneckonců proto jste si je koupili, proces degradace a opotřebovávání se jen urychlí. Skluznice oxiduje i skluzem po sněhové pokrývce, sníh funguje jako odrazová plocha pro sluneční záření, tedy i za jízdy na skluznici působí sluneční záření, teplotní přechody a výkyvy… Čím více na pneumatikách jezdíme a čím náročnější je terén, ve kterém jezdíme, tím rychleji se pneumatiky opotřebovávají. Někteří z nás skluznice lyží navíc servisují, aplikují na ně vosky, které zažehlují, seškrabávají, kartáčují, leští, strukturují… Skluznici tak dále mechanicky i chemicky namáhají. Některé namáhání, zvláště vysoké teploty pak skluznici přímo poškozují. Životnost závodních pneumatik se extrémně zkracuje zahříváním nebo naopak podchlazováním. Okamžitý výkon je vykoupen zkrácenou životností.

 

Ale „odborníci“ na servis lyží mají určitě pravdu v tom, že to nejlepší, co můžete udělat, je jezdit na degradované a opotřebované skluznici, protože právě ta a žádná jiná je – podobně jako sjeté a ztvrdlé pneumatiky – základem pro rychlou a bezpečnou jízdu… Tady už chybí jen ženská obřízka rezavou žiletkou!

 

Čtvrté ALE = fluor

 

Pokud jste na skluznice Vašich lyží aplikovali pravidelně fluor, a to navíc fluor ve formě prášků pomocí vysokých zažehlovacích teplot, pak doporučujeme na lyže ISANTIN bez přebroušení neaplikovat. S velkou pravděpodobností se totiž buď vůbec nenaváže, pokud se naváže, tak se velmi rychle ojede. Fluor blokuje provazby mezi ISANTIN a svrchní vrstvou skluznice na molekulární úrovni. Po pravidelné aplikaci fluorových prostředků zažehlovacími teplotami přes 140 stupňů C bude svrchní vrstva skluznice navíc poškozená.

 

Páté ALE = siloxany

 

Podobně jako se ISANTIN nemá rád s fluorem, nemá se rád ani se siloxany, tedy látkami zlepšujícími skluz, které jsou relativně často obsaženy v tzv. FLUOR-FREE přípravcích. O tom, zda jsou ve voscích, které jste používali v minulosti, obsaženy siloxany se bohužel nedozvíte, jelikož výrobci skluzných vosků přesné složení zpravidla úzkostlivě tají… Nezbývá tedy, než opět doporučit přebroušení! A jako zákazníci se můžeme samozřejmě výrobců dotazovat, co ty jejich vosky vlastně obsahují…

 

Šesté ALE = velké namáhání

 

Se skluznicí je to opravdu jako s pneumatikami, i když opotřebení skluznice není možná na první pohled tak patrné. Agresivní sněhové podmínky (zmrzlý firn, technický sníh, suché skřípající tření na prašanu atd.) nebo agresivní servisní zásahy (vysoké zažehlovací teploty, intenzivní kartáčování ROTO přípravky, používání silných odstraňovačů vosků atd.) způsobují, že zvláště svrchní vrstva skluznice relativně rychle degraduje… Na poškozené skluznici ISANTIN drží špatně…

 

Sedmé ALE = přirozené stárnutí

 

Opět příměr s pneumatikami… Pětileté gumy jsou tak tvrdé a degradované, že –  aniž by se na nich najel byť jediný kilometr – ztratily své původní adhezivní a mechanické vlastnosti. Se skluznicí je to stejné. Svrchní vrstva staré skluznice (starší než cca 4 roky) bude degradovaná stářím…

 

Přebroušení jako takřka všelék

 

Většinu ALE „vyléčí“ přebroušení skluznice, tedy odstranění svrchní vrstvy skluznice do hloubky cca 100 mikrometrů. Některá poškození však mohou být hlubší, zpravidla se jedná o tepelná poškození způsobená vysokými (přes 140 stupňů C) až extrémními (přes 200 stupňů C) zažehlovacími teplotami.

 

Rizika přebroušení

 

Přebroušení lyží je odborný úkon, je proto nezbytné si lyže nechat přebrousit v odborném servise. Po přebroušení se může lehce změnit podíl tzv. amorfních a krystalických oblastí na povrchu skluznice, ale s touto změnou se není třeba příliš lámat hlavu. Co je ale důležité si uvědomit, je skutečnost, že přebroušené skluznice jsou jaksi „ostré“, „obnažené“ či „citlivé“… Povrch přebroušené skluznice je nutné nechat lehce zajet, strhnout či ohladit.

 

Druhé riziko přebroušení se vyskytuje u závodních lyží… Oni totiž mistři brusu zpravidla nemají proces vytváření struktury úplně pod kontrolou, jinými slovy zpravidla neumí vytvořit identickou strukturu znovu či po druhé, zkrátka a dobře neumí struktury replikovat.

 

Téma replikace struktur závodních lyží je obsáhlé a složité. Není to téma pro tento článek. Ale nemůžeme se divit někomu, komu se v zásadě náhodou povedlo „něco“ trefit, že se snaží toto „něco“ střežit jako oko v hlavě a bojí se tedy skluznici opět přebrousit.

Pověru o špatném vlivu přebrušování lyží tedy rozšířili primárně ti mistři brusu, kteří nemají proces pod kontrolou, a vědí tedy, že co se povedlo dnes, se již nemusí povést zítra 

 

Je možné ISANTIN kombinovat s ostatními vosky na skluz?

 

Ano i ne… 

 

Kdy ne?

 

Před aplikací ISANTIN by skluznice měla být zdravá a zbavená všech nečistot, ale i vosků. Vosky – zvláště pak ty s obsahem fluoru a siloxanů – blokují provazby mezi ISANTIN a svrchní vrstvou skluznice. Čím zdravější, čistší a prostá všech dalších látek skluznice bude, tím se ISANTIN lépe naváže a tím déle a lépe pojede!

 

Kdy ano?

 

Na skluznou vrstvu ISANTIN, která se pevně navázala na svrchní vrstvu skluznice a překryla skluznici novou skluznou vrstvou o tloušťce 1 až 2 mikrometrů, je možné aplikovat libovolné skluzné vosky s výjimkou vosků s obsahem fluoru a siloxanů. Tyto další skluzné vosky by měly na skluzné vrstvě ISANTIN držet o něco lépe než na vlastní skluznici, a to díky tzv. pí-vazbám. ISANTIN je tedy možné používat také jako podkladní vrstvu nebo primer!

 

Je možné si ISANTIN aplikovat v domácích podmínkách?

 

U nových lyží a u starších lyží s nepoškozenou skluznicí ano. Stačí si objednat tzv. testovací nebo startovací sadu, řídit se přiloženým návodem pro aplikaci, popř. si před aplikací prohlédnout video-instruktáž na YOUTUBE.

 

U starších lyží s rizikem poškození svrchní vrstvy skluznice jednoznačně doporučujeme skluznici nejprve nechat přebrousit a teprve po přebroušení aplikovat ISANTIN.

 

Je možné si nechat ISANTIN aplikovat v odborných servisech?

 

Ano, ale… Zvláště u sjezdových lyží je ideální si nechat ISANTIN aplikovat poté, co jste si nechali udělat servis hran. Při broušení hran je nutné zpravidla také přebrousit povrch skluznice. A právě toto přebroušení skluznice a následné přebroušení hran je optimální příprava pro aplikaci ISANTIN. Místo běžného vosku, který na sjezdových lyží tak jako tak nevydrží déle než jeden den, se aplikuje ISANTIN! Tolik ta jednodušší část odpovědi.

 

A teď ta složitější: v rámci rozsáhlého testování a komunikace s různými servisy a ski-shopy jsme zjistili, že při aplikaci ISANTIN se dá udělat mnoho drobnějších a vážnějších chyb a přehmatů. Každá z nich pak více či méně přispívá k tomu, že ISANTIN se nechová a nefunguje přesně tak, jak má, tedy jako pevně navázaná, jednolitá, slabá, hladká, tvrdá, povrch struktury kopírující, špíno-odpudivá, vodivá skluzná mezi-vrstva.

 

Proto jsme se rozhodli, že ISANTIN se nebude nabízet pouze tam, kde můžeme zajistit jeho sto-procentní aplikaci a kde jsou z přípravků ISANTIN stejně nadšení jako my, tedy ti, kdo byli a jsou u jeho napínavého příběhu již mnoho let. ISANTIN nejsou pouze přípravky na zlepšení skluzu, ISANTIN je změna paradigmatu, zcela nový přístup k servisu lyží… Buď ho přijmete za svůj, nebo si budete dál patlat na lyže vosky 

 

Pro koho se ISANTIN hodí?

 

ISANTIN se dá používat pro všechny výkonnostní kategorie lyžařů… Skluz a radost z jízdy zlepší úplně všem. ISANTIN nabízí verzi TOUR pro příležitostné sjezdaře i běžkaře, verzi HOBBY pro ty lyžaře, kteří sice nejsou profesionálové, ale na výkonu jim rozhodně záleží. Z této kategorie uvítají ISANTIN především dálkoví běžci, protože jim konečně něco vydrží na celý LAUF, ale i hltači kilometrů na sjezdovkách, protože lyže jim pojedou rychleji a lépe, a proto toho víc najedou! ISANTIN je ale stále rozšířenější i mezi profesionály, kde aplikace PROFI či HIGH PERFORMANCE slaví nejeden úspěch.

 

Kde je možné si ISANTIN objednat pro tzv. domácí použití?

 

Nejlépe na domovské stránce ISANTIN.ch v sekci SHOP EU. Pro domácí použití doporučujeme startovací sady ALPIN / NORDIC / NORDIC SKIN. Sada se vždy skládá z vlastního přípravku, bločku s flísem určeným pro zapracování přípravku a kartáče pro rozleštění. Pro skiny a mohérové pásy doporučujeme ISANTIN S, který se pouze nanese.

 

Kde je možné si ISANTIN nechat aplikovat?

 

Pro aplikaci v servisech jsme domluvili spolupráci s vybranými ski-servisy a ski-shopy. V případě aplikace ISANTIN v odborných servisech rozlišujeme mezi sekcí ALPIN, tedy sjezdaři, kam řadíme i prknaře, ski-alpinisty, free-ridery a další podskupiny, a sekcí NORDIC, tedy běžkaři, kam řadíme klasiky, skataře i horéristy či skinaře.

 

Stačí si vybrat příslušnou službu z kategorie TOUR / HOBBY / PROFI a pracovníci odborných servisů Vás sdělí další informace.

 

U sekce ALPIN vždy doporučujeme ISANTIN aplikovat po přebroušení skluznice a hran.

 

Primárně se můžete obrátit na

 

·      ISANTIN Servis Bedřichov

o   Lubor Špís, + 420 777 904 895, luborspis@seznam.cz

 

V případě jakýchkoli dotazů se můžete kdykoli obrátit, na info@isantin.ch

 

 

 

 

 

 

sobota 11. ledna 2025

Teorie skluzu, část II. - teorie třecího tepla a hydrodynamický režim tření

 Teorie skluzu, část II., teorie třecího tepla a hydrodynamický režim tření

 

Asi nejrozporuplnější teorie skluzu… Teorie třecího tepla tvrdí, že tření mezi povrchem skluznice a povrchem sněhové pokrývky produkuje teplo, které má dostatečně velký energetický potenciál na to, aby docházelo k natavování sněhové pokrývky a produkci vodního filmu mezi povrchem skluznice a povrchem sněhu.

 

S teorií třecího tepla jsou následně „provazovány“ tři základní režimy tření:

 

·      Hydrodynamický režim tření

·      Smíšený režim tření

·      Hraniční režim tření 

Hydrodynamický režim tření 

V hydrodynamickém režimu tření má být povrch skluznice a povrch sněhové pokrývky zcela oddělen „silným“ vodním filmem. Produkce další „vody“ a tedy nárůst tloušťky vodního filmu v důsledku třecího tepla mezi povrchem skluznice a povrchem sněhové pokrývky jsou považovány za nežádoucí či negativní jev. Tvar křivky na obrázku č. 2 zobrazující závislost koeficientu tření na tloušťce vodního filmu naznačuje, že s narůstající tloušťkou vodního filmu narůstá rovněž koeficient tření, nicméně i při maximálních v grafu zohledněných tloušťkách vodního filmu je COF výrazně nižší než tam, kde se žádný vodní film nevyskytuje, tedy v hraničním režimu tření. V hydrodynamické režimu tření tedy teorie třecího tepla „vysvětluje“ nárůst tření, tedy vyšší COF, tedy horší skluzné vlastnosti tím, že tepelná energie vytvářená třením produkuje další vodu a tím zvyšuje tloušťku vodního filmu, narůstající tloušťka vodního filmu pak zvyšuje tření, tedy zpomaluje lyži, zhoršuje skluz. Tření = třecí teplo, třecí teplo = více vody, více vody = silnější vodní film, silnější vodní film = horší skluz.

 

Je tomu ale opravdu tak?

 

Trochu ano, ale více ne!

 

Na úvod je nutné říci, že nejnovější výzkumy a měření ukazují, že právě v hydrodynamickém režimu tření jsou koeficienty tření absolutně nejvyšší, jsou dokonce výrazně vyšší než v tzv. hraničním režimu tření, tedy na vodě lyže jednoduše nejedou, nebo jedou velmi špatně… Každý z nás si jistě vybaví zkušenost, když ve vysoké rychlosti vjel z tvrdé umrzlé stopy ve stínu do měkkého mokrého sněhu na osluněných partiích tracku či sjezdovky, jeden má v tu chvíli co dělat, aby to ustál bez pádu.

 

Dalším omylem je produkce vody způsobená třecím teplem. V hydrodynamickém režimu jsou oba povrchy opravdu velmi často zcela odděleny vodním filmem. Ačkoli je voda špatný lubrikant, neprodukuje skluz po vodním filmu a s ním spojené tření žádné závratné množství tepelné energie. Za vysoké hodnoty koeficientu tření odpovídají zjevně jiné efekty.

 

Zkrátka a dobře není výskyt vodního filmu mezi oběma povrchy, tedy povrchem sněhu a povrchem skluznice způsoben třecím teplem, nýbrž přirozeným táním sněhu a ledu při teplotách vzduchu nad nulou. Jak již víme z článku o metamorfózách sněhu, ustálí se teplota sněhu při teplotách vzduchu nad bodem mrazu na nule a na nule zůstává tak dlouho, dokud se nerozpustí poslední kousek ledu, pak začne teplota vody pozvolně stoupat.

 

Bez ohledu na druh sněhu začínají tát a přecházet z pevného do kapalného skupenství nejprve nejsubtilnější tvary sněhových krystalů nebo zrn. Vzniklá „volná“ voda nejprve vyplňuje vzduchem vyplněné prostory mezi pevnými částicemi. Čím hustší sníh, tím méně vzduchových kavit uvnitř sněhové pokrývky a tím rychleji začne proces tání vytvářet vodní film přímo na povrchu sněhu, tedy stopy.

 

Např. u starého hrubozrnného sněhu tvořeného zpravidla velkými zakulacenými sněhovými zrny navzájem provázanými tzv. můstky či krčky, začínají při teplotách vzduchu nad nulou roztávat nejprve můstky a krčky a následně povrch ledových zrnek. Prostor mezi jednotlivými zrnky začne být vyplňován vodou a postupujícím procesem tání začnou jednotlivá zrna jaksi „plavat“ ve vodním „láku“. Zde již zpravidla mluvíme o velmi mokrém či zvodnělém sněhu, plném volné vody a zpravidla také nečistot.

 

Vodní film mezi skluznicí lyže a povrchem sněhu se buď na povrchu stopy přímo nachází, nebo je voda při skluzu lyže vytlačována k povrchu a následně skluznicí roztahována do délky a do šířky.

 

Co ale způsobuje ony vysoké hodnoty koeficientu tření právě za mokrých podmínek s výskytem vodního filmu?

 

Víme, že hodnoty koeficientu tření jsou za mokra, tedy za přítomnosti vodního filmu zdaleka nejvyšší, a to napříč všemi podmínkami, na kterých se lyžuje. Na vodě to prostě nejede!

 

Nabízí se velmi jednoduchá odpověď: voda je špatný lubrikant a neklouže / nejede. Tato odpověď si bohužel protiřečí s vysvětlením, proč jsou koeficienty tření v tzv. smíšeném režimu, tedy za situace, kde se skluz odehrává dílem na vodě a dílem na pevných částech sněhové pokrývky, extrémně nízké.

 

Pokud by za vysoké koeficienty v hydrodynamickém režimu zodpovídaly pouze a jenom špatné lubrikační vlastnosti vody, pak by se tyto špatné lubrikační vlastnosti musely zákonitě projevit i ve smíšeném režimu.

 

Další možná odpověď jsou sací síly, kapilární krčky a smykové síly uvnitř vodního filmu. Vodní film se má tendenci přisávat k hladkému povrchu skluznice, při následném oddálení povrchu skluznice se mají vytvářet kapilární krčky mezi oběma povrchy, které brzdí, než prasknou. Vedle toho mají uvnitř kapaliny, na jejímž povrchu se odehrává skluz pevného tělesa, tedy lyže, působit smykové či střižné síly, které opět brzdí.

 

Dlouho se myslelo, že právě hrubé a hluboké vzory struktur určené pro mokré až velmi mokré podmínky zodpovídají za to, že tyto sací, kapilární a smykové síly zvyšující tření, a tedy zhoršující skluzné vlastnosti lyží za mokrých podmínek, mohou být omezovány právě a díky hrubým a hlukovým strukturám. Hluboké a široké drážky měly zabraňovat tvorbě velkoplošných kapilárních krčků. 

 

Aktuální četné výzkumy a testy však ukazují, že pozitivní efekt tzv. hrubých struktur za mokrých podmínek není zdaleka tak přímočarý, jak bylo po mnoho let tradováno, což zároveň oslabuje význam sacích sil a kapilárních krčků pro vysoké hodnoty COF za mokrých podmínek.

 

Jinou odpověď na otázku, proč lyže za mokra nejedou, lze hledat v kontaktní ploše. Za mokrých podmínek se skutečná plocha skluznice, u běžeckých lyží např. 4,5 x 180 cm = 810 cm2, u sjezdových lyží např. 10 x 180 cm = 1800 cm2, rovná více či méně kontaktní ploše. Kontaktní plocha je tedy v důsledku přítomnosti vodního filmu maximálně možná, či extrémní. Pro srovnání si uveďme velikost skutečné kontaktní plochy mezi skluznicí a sněhem za podmínek tzv. hraničního režimu tření, která odpovídá přibližně 1% celkové plochy skluznice, u běžeckých lyží tedy cca 8 až 10 cm2, u sjezdových lyží pak cca 18 až 20 cm2.

 

Extrémní kontaktní plocha představuje extrémní potenciál pro interakce mezi oběma povrchy, a právě v extrémní ploše a v extrémním množství vzájemných interakcí je – dle našeho názoru – nutné hledat příčiny oněch extrémních hodnot COF za mokrých podmínek, tedy skutečnou odpověď na otázku, proč lyže za mokra nejdou!

 

O jaké interakce se jedná, jak působí a proč mají tak velký vliv na skluz lyží, proč právě vosky s fluorem zásadně zlepšovaly skluz za mokra? Tak to vše si povíme zase někdy příště 

 

 

 

 

 

 

 

 

Teorie skluzu, část I. - slepé uličky

 Teorie skluzu – část I., slepé uličky 

 

Abychom mohli správně provádět servis lyží pro zlepšení skluzných vlastností na sněhu či ledu, měli bychom – vedle mnoha dalších znalostí, např. těch o sněhu a vlivech počasí, těch o skluznicích a jejich složení, těch o vlastnostech lyží a způsobu přenášení zatížení a silových účinků od lyžaře, přes stavbu lyže až po skluznici klouzající po sněhové pokrývce, těch o složení a aplikaci nejrůznějších skluzných prostředků – znát alespoň základní principy, na základě kterých se skluz mezi povrchem skluznice a sněhové pokrývky odehrává.

 

Ano, dnes bude řeč o principech tření mezi povrchem skluznice a sněhové či ledové pokrývky.

 

Na úvod si musíme říci, že bádání a výzkum v této oblasti jsou extrémně komplikované, v důsledku čehož docházelo – a bohužel stále dochází – k četným zjednodušením, v jejichž důsledku nebyly a nejsou informace o podmínkách skluzu mezi lyží a sněhem právě příliš spolehlivé.

 

Na úvod se tedy připomeneme některé ze slepých uliček a omylů.

 

Testování na ledu

 

Většina starších odborných či vědeckých prací popisujících či zkoumajících podmínky skluzu mezi povrchem skluznice a povrchem sněhové pokrývky čerpala svá experimentální data z testů a zkoušek na ledu.

 

Důvod byl a je velmi prostý. Sníh podléhá enormně rychle velmi složitým transformacím, které je velmi složité podchytit. Důvodem je komplexnost sněhové pokrývky, která je tvořena 1) pevnými částicemi, tedy různě velkými a různě tvarovanými sněhovými krystaly a zrny, 2) vzduchovými kavitami o různé velikosti a různého celkového poměru ve sněhové pokrývce, 3) primárně při teplotách vzduchu nad nulou tzv. volnou vodou vyskytující se v prostorech mezi zrny a krystaly nebo přímo na povrchu sněhu, 4) propojujícími či provazujícími prvky, které dílem pružně a dílem křehce provazují a propojují jednotlivé pevné částice do matrice či rastru. 

 

Změny / transformace či metamorfózy sněhové pokrývky pak vedou ke změnám podmínek testů. Testy za proměnlivých zkoušek nejsou validní.

 

Proto se celá řada výzkumníků uchylovala k ledu. Transformace u ledu jsou jednak mnohem pomalejší, jednak se led mnohem jednodušeji reprodukuje. Led je tedy ve srovnání se sněhem velmi stabilní a snadno reprodukovatelný.

 

Dlouho se myslelo, že výsledky z testů a zkoušek prováděných na ledu platí, s drobnými korekcemi pro podmínky na sněhu, vždyť sníh je koneckonců tvořen ledem.

 

Bohužel se ale ukazuje, že tento předpoklad byl velmi nesprávný. Podmínky tření na ledu a sněhu se zásadním způsobem liší, a to tak zásadním způsobem, že informace získané ze zkoušek a testů na ledu jsou pro podmínky na sněhu prakticky nepoužitelné.

 

Testování v laboratořích na malých vzorcích

 

Aby se pro testy a zkoušky zajistily co možná nejpřesnější a nejlépe kontrolované podmínky (teplota vzduchu a sněhu, vlhkost, podíl vody, struktura sněhu / ledu atd.) prováděla se měření v laboratořích na zařízeních zvaných tribometry.

 

Aby však bylo možné měření realizovat v laboratorních podmínkách, bylo nutné reálné lyže (běžecké či sjezdové) zásadním způsobem zmenšit. Vznikly tak vzorky lyží pro laboratorní zkoušky vyrobené ze stejných materiálů jako lyže skutečné (tělo lyže, skluznice, hrany, patka, inserty atd.), nicméně mnohonásobně zmenšené.

 

Bohužel se také ukázalo, že výsledky získané na mini-vzorcích používaných v laboratořích se významně liší od podmínek na skutečných / reálných lyžích. Zkrátka a dobře mini-lyže se na sněhovém či ledovém povrchu chová úplně jinak, než lyže reálné velikosti a tvaru.

 

Zjištění, že výsledky získané v laboratořích pomocí mini-lyží jsou pro praxi a reálný popis podmínek skluzu mezi skluznicí lyže a povrchem sněhu či ledu nepoužitelné, vedlo k zavedení tribometrických zařízení, která umožňují testovat v laboratorních, tedy kontrolovaných a replikovatelných podmínkách reálně lyže. Vznikl tak např. large scale tribometer in Innsbruck umožňující testování skutečných lyží za kontrolovaných a replikovatelných podmínek.

 

Zajíždění stopy

 

Asi největší problém pro replikovatelnost testů prováděných na sněhu (od testů na ledu se na přelomu století začalo upouštět) je tzv. zajíždění stopy, a to jak při testech laboratorních, tak při testech polních.

 

Sníh je látka, která velmi rychle podléhá velmi komplexním transformačním procesům. Zkrátka a dobře sníh se neustále mění a přetváří. Sníh se přetváří a proměňuje také tím, že se ve stopě jezdí. Jinými slovy: druhý pár testovaných lyží již jede v jiné stopě, než ve které jel pár první. Jsou sněhové podmínky, kde jsou transformace povrchu sněhu velmi rychlé a rozsáhlé, existují také sněhové podmínky, které jsou spíše stabilní a změny probíhají spíše pomalu, nicméně změny – rychlé a zásadní nebo pomalé a drobné – probíhají vždy.

 

Zajíždění testovacích stop a jejich proměny vlivem skluzu projíždějících lyží je téma, se kterým je nutné se zjevně smířit.

 

Kontaminace testovacích stop

 

Servisní team jednoho tuzemského národního teamu jezdí pravidelně testovat nové lyže, skluznice a skluzné přípravky do tunelu v Oberhofu, Německo.

 

Po jednom rozsáhlém testování těsně před začátkem sezóny „Rybis“ uvedl, že společně s nimi testovaly ve skluzné stopě další dva teamy, ale že je to „OK“, protože stoupací přípravky se testovaly ve stopě jiné.

 

Když si uvědomíme, 1. že každý přípravek se musí otestovat v několika jízdách, 2. že mnoho přípravků – zvláště liquidů a speederů – drží na skluznici spíše silou vůle, než chemickými vazbami, 3. že každý průjezd více či méně proměnil testovací stopu po tribologické stránce, 4. že desítky až stovky průjezdů, při kterých se do testovací stopy uvolňovaly nejrůznější chemické látky, proměňovaly testovací stopu chemicky i fyzikálně, 5. že servisní team našich biatlonistů nemohl tušit, co v testovací stopě zkouší další teamy, tedy že podstatná část chemických látek, které se do stopy uvolňovaly, byly neznámé, pak mohli kluci šikovní jít raději někam na dobré pivo, neb posezení u vychlazeného Kozlíka s přáteli by bylo zcela jistě mnohem smysluplnější 

 

Závěr

 

Získávání spolehlivých a věrohodných informací o podmínkách skluzu mezi povrchem skluznice a sněhové pokrývky je velmi složité. Nicméně i slepé uličky evoluce jsou pokrokem. Tedy s výjimkou diletantismu v podání českého biatlonového servisního týmu. To je pouze ztráta času a mrhání prostředků 

 

 

 

pondělí 10. června 2024

Jak fungují struktury - teorie abraze

Druhá zásadní teorie objasňující podmínky tření v tzv. hraničním režimu staví do středu zájmu oděr a tvrdost, sníh a led.

 

Provádět laboratorní i polní zkoušky na sněhu je s ohledem na jeho specifické vlastnosti, jako jsou extrémní proměnlivost, enormní tvarová a strukturní pestrost, velmi problematické. Proto se také velká část – zvláště laboratorních – výzkumů provádí na vzorcích ledu, a nikoli sněhu. Výsledky získané na ledu se následně aplikují na sníh.

 

Zdá se, že teorie třecího tepla vyvinutá v oblasti skluzu na ledu (zvláště v oblasti bruslení, závodního sáňkování či bobování) platí pro kontakt ledu s kovovou čepelí, v oblasti skluzu plastové lyže na sněhu však zásadně pokulhává.

 

I přesto, že sníh se skládá z drobných ledových zrnek či krystalů vzájemně provázaných a propojených, má sníh natolik specifické vlastnosti, že výsledky výzkumu prováděné na ledu se ukazují být pro sníh nepoužitelné.

 

Alespoň teorie abraze sněhových krystalů na tyto skutečnosti odkazuje. Teorie abraze sněhových krystalů postuluje, že při teplotách hluboko pod bodem mrazu se zvyšuje tvrdost, ale také křehkost jednotlivých sněhových krystalů či zrn. Jak víme z teorie třecího tepla, dochází v režimu tzv. hraničního tření k přímému kontaktu asperit na povrchu skluznice a sněhové pokrývky. V místě kontaktních bodů působí velký tlak a velké tření. Dle teorie abraze však nedochází k natavování mikroskopických kontaktních míst a k produkci vodního filmu, jak pro kontakt ledu s kovovou čepelí postuluje teorie třecího tepla, nýbrž k odlamování drobných částí křehkých sněhových krystalů či zrn, nebo k vylamování celých zrn ze sněhové mřížky.

 

 

Pokud dochází k odlamování drobných částí sněhových krystalů vlivem tlaku a tření, vyplňují tyto odlomené části sněhových krystalů porézní oblasti sněhové pokrývky. Odlomené části sněhových krystalů, které vyplnily porézní oblasti sněhové pokrývky, jsou extrémně rychle integrovány bleskurychlými sitračními procesy, a to v řádu zlomků vteřin. Jakmile jsou integrovány do sněhové pokrývky, dochází k jejich uhlazování dále probíhajícím skluzem a třením.

 

Pokud dochází k vylamování celých zrn ze sněhové mřížky, umožňují vylomená sněhová zrnka valivé tření mezi oběma povrchy, a to do okamžiku, než dojde k jejich zatlačení do porézního povrchu sněhové pokrývky. Jakmile jsou vylomená sněhová zrna zatlačena do porézního povrchu, následují již proces odlamování.

 

Je přirozené, že oba procesy – jak proces odlamování drobných částí ze sněhových zrn, ukládání odlomených částí do porézních oblastí sněhové pokrývky, rychlá integrace a následné uhlazování, tak proces vylamování celých zrn, valivého tření s následným zamáčknutím do porézní oblasti sněhové pokrývky – probíhají paralelně. Předpokládá se, že čím nižší jsou teploty pod bodem mrazu a čím sušší, a tedy tvrdší a křehčí sníh je, tím více narůstá podíl vylamování celých krystalů či zrn.

 

Pokud dochází k vylamování jemnějších či hrubších zrn, které jsou již méně či více zaoblená, dochází bezprostředně k valivému tření. Pokud však dochází k vylamování málo transformovaných zrn až krystalů, pak je jízda na lyžích extrémně náročná. Každý z nás si jistě vybaví skřípající prašen hluboko pod nulou… I jízda na písku by byla pohodlnější 

 

A tady jsme se propracovali k druhému fenoménu, který určuje skluzné vlastnosti za podmínek tzv. hraničního režimu tření, a tím je tvrdost.

 

Tvrdost skluznice je konstantní. U závodních lyží bývá kolem 65 shore D. Tvrdost sněhu je ale proměnlivá. Tvrdost sněhu je přímo závislá na vlhkosti. Čím vyšší vlhkost, tím měkčí sníh, a naopak, čím nižší vlhkost sněhu, tím tvrdší sníh. Vlhkost sněhu pak závisí na teplotě a vlhkosti vzduchu. Čím vyšší teplota a/nebo vlhkost vzduchu, tím měkčí sníh, a naopak, čím nižší teplota vzduchu a/nebo vlhkost vzduchu, tím tvrdší a křehčí sníh.

 

Je-li sníh dostatečně suchý, tedy jsou-li teploty dostatečně nízké, vzroste tvrdost jednotlivých sněhových zrn a krystalů nad tvrdost skluznice. V tento okamžik se sněhové krystaly začnou zarývat do skluznice. Proces „pluhování“ skluznice sněhem probíhá – naštěstí – souběžně s procesem elastické deformace vrchní části sněhové pokrývky, pokud by tomu tak nebylo, lyže by prakticky nemohla klouzat.

 

Co z toho vyplývá? Vedle strukturování ovlivňuje kvalitu skluzu za podmínek tzv. hraničního režimu tření především tvrdost skluznice. Ano, je to tak: čím tvrdší skluznice, tím dále se posune hranice, kdy sněhové krystaly začnou „pluhovat“ skluznici, což je jev, který je doprovázen enormním nárůstem tření.

 



A zda jsme narazili na jeden z hlavních problémů aplikace kluzných vosků pro tzv. hraniční režim tření. Na světě prakticky neexistuje skluzný vosk, po jehož aplikaci by nedošlo ke snížení základní tvrdosti skluznice. Ano, je to tak! Vůbec nejtvrdší HF vosky dosahovaly tvrdosti cca 50 až 55 shore D, zatímco měkké vosky s krátkým molekulárním řetězcem mají tvrdost jen cca 10 až 15 shore D. Tedy jakoukoli aplikací kluzných vosků základní tvrdost skluznice vždy pouze snížíme.

 


Kolegu Kuzmina tedy napadlo, že bude lepší min. pro podmínky hraničního tření žádný skluzný vosk neaplikovat a nesnižovat tak tvrdost základního materiálu skluznice. Bohužel to příliš nefunguje, protože skluzný vosk skluznici nejenom adaptuje na aktuální sněhové podmínky za účelem zlepšení skluzu, nýbrž ji také chrání. Nechráněná skluznice bohužel nefunguje a zde také teorie kolegy Kuzmina naráží tak trochu do zdi!

 

Co s tím? O tom opět příště!

 

sobota 1. června 2024

Jak fungují struktury - teorie třecího tepla...

 Jak ale strukturování za podmínek tzv. hraničního režimu tření funguje? Co jsou základní principy a veličiny, které bychom se měly snažit ovlivňovat?

 

Je to tak, abychom mohli používat správně struktury v tzv. hraničním režimu tření, musíme jim rozumět, musíme chápat – alespoň rámcově, co se to tam dole pod skluznicí děje. Můžeme samozřejmě – podobně jako někteří naši přední odborníci na strukturování – navrhovat nové, mnohovrstvé struktury, měnit hloubku, tvar, přítlak, rychlost posuvu atd., aniž bychom tušili, jaký vliv má který parametr, protože, jak naši mistři brusu sami říkají, je třeba mít velké cíle… Ale vězte prosím, že podobně jako můj čtyřletý syn nemůže řídit provoz jaderné elektrárny, tak nemůže nikdo, kdo nemá ani páru, ani ánung o tom, jak struktury fungují a jaké parametry mají jaký vliv, ani vymyslet, ani vyvinout žádnou dobrou strukturu, bez ohledu na to, zda je to šéf servisu nebo jiný aparátčík kdovíjakého svazu 

 

Jedna z nejrozšířenějších a aktuálně nejvíce preferovaná teorie říká, že základem funkce struktur v tzv. hraničním režimu tření je třecí teplo. Zní to divně, ale smysl to celkem dává. Minimálně pro podmínky mezi ledovým povrchem a ocelovou čepelí. Z předchozího příspěvku víme, že v hraničním režimu tření se oba povrchy, tedy skluznice lyže na straně jedné, a sníh na straně druhé, dotýkají v oblasti asperit, tedy největších nerovností. Víme, že za těchto podmínek je skutečná kontaktní plocha mezi lyží a sněhem velmi malá a že v kontaktních bodech působí relativně vysoký tlak, který je společně s drsností obou povrchů zdrojem relativně velkého tření. A tření vytváří teplo. 

 

Dobře. Ale jak s třením a teplem souvisí strukturování? Díky jemné struktuře se sice zvětší celková plocha skluznice, ale skutečná kontaktní plocha mezi povrchem skluznice a povrchem sněhu se naopak ještě zmenší, rapidně se zmenší počet kontaktních bodů. A protože fyzika funguje i u lyžařů, tak při stejném zatížení (strukturování nemá – Bohu dík – žádný vliv na hmotnost lyžaře) a menší ploše opět vzroste tlak. V důsledku vyššího tlaku se dle této teorie zvýší tření. Vyšší tření vygeneruje více tepla. A? Jednoho teď musí napadnout, že kvůli strukturování jsme dosáhli přesně opačného efektu, než o který jsme usilovali, neb tření se nám naopak zvýšilo, tedy skluz lyže bude ještě horší a energeticky náročnější. To je sice pravda, ale pouze zčásti, respektive pouze v počáteční fázi. Protože – dle teorie třecího tepla – vyšší tření, vyrobí více tepla a větší množství tepla nataví mikroskopické kontaktní plochy. A? A začne se vytvářet vodní film. A? A vodní film začne na straně jedné působit jako lubrikant a jak víme – třeba ze sexu – zvláště tekutý lubrikant prudce snižuje tření, na straně druhé začne vodní film oddělovat povrchy, čímž začne přebírat část zatížení a díky tomu snižovat tlak, a s poklesem tlaku a narůstající lubrikovanou plochou začne prudce klesat tření… A? A lyže lépe klouže!

 

Podle teorie třecího tepla tedy správně zvolené strukturování zlepšuje produkci vodního filmu, a tím umožňuje změnu třecího režimu z tzv. hraničního třecího režimu do tzv. smíšeného režimu tření za chladných podmínek.

 

Obrázek č. 1: a) nenarušený povrch jemnozrnného sněhu, za zmínku stojí krčky či můstky propojující jednotlivá zrna, vznikající primárně při transformaci sněhu, b) v červeném orámování povrch sněhu natavený v důsledku působení tepla (v tomto případě otisk prstu), zdroj: J. H. Lever et. col., Evidence that abrasion can govern snow kinetic friction, Journal of Glaciology, 2018

 

 

Teorii třecího tepla podporuje – mimo jiné – skutečnost, že základní materiál skluznice, tedy UHMWPE je vynikající izolant, tedy kromě toho, že prakticky nevede elektrický proud, velmi špatně přenáší teplo. Pokud tedy teplo neodchází přes – izolující – skluznici směrem do lyže, odchází přes kontaktní body směrem do sněhové pokrývky, kde – jak postuluje teorie třecího tepla – natavuje mikroskopické kontaktní body a generuje vodní film.

 

Z pohledu teorie třecího tepla je naopak problematický grafit, který se ve formě sazí přidává takřka do všech závodních a většiny sintrovaných skluznic lyží. Grafit je totiž nejenom tzv. tuhý lubrikant. Podobně jako tuhý deodorant účinně snižuje pocení, tak grafit coby tuhý lubrikant výborně snižuje tření, a to díky své unikátní lamelární molekulární struktuře.

 

 

Obrázek č. 2: schematické znázornění molekulární struktury grafitu, kde atomy uhlíku v jednotlivých lamelách jsou vázány pevnými vazbami, zatímco jednotlivé vrstvy či lamely mezi sebou pouze velmi slabými silami, zdroj: R. Swar, Effects of Materials and Texturing on Wettability of Ski Base, Degree Project, 2022

 

Zatímco atomy uhlíku v jednotlivých vrstvách jsou vázány velmi pevnými kovaletními vazbami, jsou jednotlivé vrstvy neboli lamely mezi sebou vázány velmi slabými van der Waals silami, díky čemuž lamely po sobě krásně kloužou. Díky svým lubrikačním vlastnostem snižuje tedy grafit tření přímo v mikroskopických kontaktních bodech mezi nerovnostmi na skluznici a nerovnostmi na sněhové pokrývce, čímž částečně oslabuje nárůst třecího tepla v počáteční fázi kontaktu.

 

To ale není hlavní problém grafitu pro teorii třecího tepla. Jak jsme uvedli výše, je grafit nejenom výborný tuhý lubrikant, nýbrž také vynikající vodič. A jako vynikající vodič nejenom vede výborně elektrickou energii (což je u tření na studeném, suchém a krystalickém sněhu velmi preferovaná vlastnost), nýbrž vede také výborně teplo, ano, přesně to teplo, které je v teorii třecího tepla využíváno k natavování kontaktních bodů a produkci vodního filmu. Teplo, které je díky enormně vodivému grafitu odvedeno z místa kontaktních bodů do těla lyže, pak zpomaluje a oddaluje produkci vodního filmu a kontakt mezi skluznicí lyže a sněhem je déle řízen zákony tzv. hraničního tření, a to nikdo nechce…

 

Kromě lubrikačních vlastností a enormní vodivosti má grafit ještě jednu nikoli právě vítanou vlastnost pro podmínky tzv. hraničního režimu tření. Která to je? Grafit je měkký, extrémně měkký. A proto s rostoucím podílem grafitu ve skluznici (u závodních lyží může být podíl grafitu až 20 %) narůstá riziko poklesu tvrdosti skluznice. A právě tvrdost skluznice je ústředním tématem druhé teorie, která vysvětluje efekty strukturování za podmínek slabého vodního filmu neboli tzv. hraničního režimu tření… ale o té si povíme zase někdy příště!

 

 

Obrázek č. 2: tabulka specifikující vlastnosti speciální závodní skluznice pro studené podmínky od společnosti ISOSPORT. Co všechno zde můžeme vyčíst? Obsah sazí, tedy grafitu až 20 %, ale zároveň velmi dobrá tvrdost, tedy 65 shore D, vysoká hustota, tedy 0,985 g/cm3 a slušná schopnost absorbovat vosk 1,8 g/cm2, zdroj: internetová stránka společnosti ISOSPORT VERBUNDTEILE Austria

 

Teorie třecího tepla tedy postuluje, že strukturováním ještě více snížíme plochu kontaktních bodů mezi sněhem a skluznicí, čímž zvýšíme tlak a tření. Toto zvýšené tření má produkovat více třecího tepla. Teplo získané třením pak natavuje kontaktní body a generuje vodní film, vodní film postupně mění režim tření z hraničního na smíšený. Se změnou třecího režimu má prudce klesat tření, a tedy zlepšovat se skluz. Tak tedy dle teorie třecího tepla zlepšuje strukturování skluz v podmínkách hraničního režimu. Ale je tomu opravdu tak???