pondělí 10. června 2024

Jak fungují struktury - teorie abraze

Druhá zásadní teorie objasňující podmínky tření v tzv. hraničním režimu staví do středu zájmu oděr a tvrdost, sníh a led.

 

Provádět laboratorní i polní zkoušky na sněhu je s ohledem na jeho specifické vlastnosti, jako jsou extrémní proměnlivost, enormní tvarová a strukturní pestrost, velmi problematické. Proto se také velká část – zvláště laboratorních – výzkumů provádí na vzorcích ledu, a nikoli sněhu. Výsledky získané na ledu se následně aplikují na sníh.

 

Zdá se, že teorie třecího tepla vyvinutá v oblasti skluzu na ledu (zvláště v oblasti bruslení, závodního sáňkování či bobování) platí pro kontakt ledu s kovovou čepelí, v oblasti skluzu plastové lyže na sněhu však zásadně pokulhává.

 

I přesto, že sníh se skládá z drobných ledových zrnek či krystalů vzájemně provázaných a propojených, má sníh natolik specifické vlastnosti, že výsledky výzkumu prováděné na ledu se ukazují být pro sníh nepoužitelné.

 

Alespoň teorie abraze sněhových krystalů na tyto skutečnosti odkazuje. Teorie abraze sněhových krystalů postuluje, že při teplotách hluboko pod bodem mrazu se zvyšuje tvrdost, ale také křehkost jednotlivých sněhových krystalů či zrn. Jak víme z teorie třecího tepla, dochází v režimu tzv. hraničního tření k přímému kontaktu asperit na povrchu skluznice a sněhové pokrývky. V místě kontaktních bodů působí velký tlak a velké tření. Dle teorie abraze však nedochází k natavování mikroskopických kontaktních míst a k produkci vodního filmu, jak pro kontakt ledu s kovovou čepelí postuluje teorie třecího tepla, nýbrž k odlamování drobných částí křehkých sněhových krystalů či zrn, nebo k vylamování celých zrn ze sněhové mřížky.

 

 

Obrázek č. 1, snímky a) až d) ukazují postupné zvětšování kontaktních bodů a jejich spojování do větších ploch při skluzu UHMWPE na suchém jemnozrnném sněhu, snímek e) ukazuje výslednou kontaktní plochu: červeně orámována jsou zvětšená a abrazí zploštělá sněhová zrna, červené šipky označují odlomené části sněhových zrn, které se zcela integrovaly do porézních oblastí sněhové pokrývky, modré šipky pak ukazují částečně integrované odlomené části sněhových zrn, kde ještě neproběhl proces sintrace, hvězdička označuje vývoj konkrétního zrna v průběhu testu, zdroj: J. H. Lever et. col., Evidence that abrasion can govern snow kinetic friction, Journal of Glaciology, 2018

 

Pokud dochází k odlamování drobných částí sněhových krystalů vlivem tlaku a tření, vyplňují tyto odlomené části sněhových krystalů porézní oblasti sněhové pokrývky. Odlomené části sněhových krystalů, které vyplnily porézní oblasti sněhové pokrývky, jsou extrémně rychle integrovány bleskurychlými sitračními procesy, a to v řádu zlomků vteřin. Jakmile jsou integrovány do sněhové pokrývky, dochází k jejich uhlazování dále probíhajícím skluzem a třením.

 

Pokud dochází k vylamování celých zrn ze sněhové mřížky, umožňují vylomená sněhová zrnka valivé tření mezi oběma povrchy, a to do okamžiku, než dojde k jejich zatlačení do porézního povrchu sněhové pokrývky. Jakmile jsou vylomená sněhová zrna zatlačena do porézního povrchu, následují již proces odlamování.

 

Je přirozené, že oba procesy – jak proces odlamování drobných částí ze sněhových zrn, ukládání odlomených částí do porézních oblastí sněhové pokrývky, rychlá integrace a následné uhlazování, tak proces vylamování celých zrn, valivého tření s následným zamáčknutím do porézní oblasti sněhové pokrývky – probíhají paralelně. Předpokládá se, že čím nižší jsou teploty pod bodem mrazu a čím sušší, a tedy tvrdší a křehčí sníh je, tím více narůstá podíl vylamování celých krystalů či zrn.

 

Pokud dochází k vylamování jemnějších či hrubších zrn, které jsou již méně či více zaoblená, dochází bezprostředně k valivému tření. Pokud však dochází k vylamování málo transformovaných zrn až krystalů, pak je jízda na lyžích extrémně náročná. Každý z nás si jistě vybaví skřípající prašen hluboko pod nulou… I jízda na písku by byla pohodlnější 

 

A tady jsme se propracovali k druhému fenoménu, který určuje skluzné vlastnosti za podmínek tzv. hraničního režimu tření, a tím je tvrdost.

 

Tvrdost skluznice je konstantní. U závodních lyží bývá kolem 65 shore D. Tvrdost sněhu je ale proměnlivá. Tvrdost sněhu je přímo závislá na vlhkosti. Čím vyšší vlhkost, tím měkčí sníh, a naopak, čím nižší vlhkost sněhu, tím tvrdší sníh. Vlhkost sněhu pak závisí na teplotě a vlhkosti vzduchu. Čím vyšší teplota a/nebo vlhkost vzduchu, tím měkčí sníh, a naopak, čím nižší teplota vzduchu a/nebo vlhkost vzduchu, tím tvrdší a křehčí sníh.

 

Je-li sníh dostatečně suchý, tedy jsou-li teploty dostatečně nízké, vzroste tvrdost jednotlivých sněhových zrn a krystalů nad tvrdost skluznice. V tento okamžik se sněhové krystaly začnou zarývat do skluznice. Proces „pluhování“ skluznice sněhem probíhá – naštěstí – souběžně s procesem elastické deformace vrchní části sněhové pokrývky, pokud by tomu tak nebylo, lyže by prakticky nemohla klouzat.

 

Co z toho vyplývá? Vedle strukturování ovlivňuje kvalitu skluzu za podmínek tzv. hraničního režimu tření především tvrdost skluznice. Ano, je to tak: čím tvrdší skluznice, tím dále se posune hranice, kdy sněhové krystaly začnou „pluhovat“ skluznici, což je jev, který je doprovázen enormním nárůstem tření.

 

 

Obrázek č. 2: i přesto, že tento graf je už hodně „vousatý“ a UHMWPE bude vykazovat výrazně lepší vlastnosti než prostý polyethylen (PE), ukazuje smutnou pravdu, jakýkoli skluzný vosk tvrdost skluznice vždy pouze sníží, a tvrdost ledu narůstá s úbytkem vlhkosti relativně příkře, sníh – díky oblasti elastické deformace – bude sledovat méně příkrou křivku, nicméně a UHMWPE bude o něco tvrdší než PE, ale i tak bude tvrdost sněhových zrn v určitém okamžiku vyšší než tvrdost skluznice, což se projeví jejím „pluhováním“ a enormním nárůstem tření, zdroj: S.C. Colbeck, Friction of Snow Skis, 1991

 

A zda jsme narazili na jeden z hlavních problémů aplikace kluzných vosků pro tzv. hraniční režim tření. Na světě prakticky neexistuje skluzný vosk, po jehož aplikaci by nedošlo ke snížení základní tvrdosti skluznice. Ano, je to tak! Vůbec nejtvrdší HF vosky dosahovaly tvrdosti cca 50 až 55 shore D, zatímco měkké vosky s krátkým molekulárním řetězcem mají tvrdost jen cca 10 až 15 shore D. Tedy jakoukoli aplikací kluzných vosků základní tvrdost skluznice vždy pouze snížíme.

 

 

 

 

Obrázek č. 3: křivky zobrazující změnu tvrdosti grafitové (GB = grafit base) a transparentní (TB = transparent base) skluznice po aplikaci tvrdého a měkkého vosku, jak je vidět, po aplikaci vosku dojde vždy pouze ke snížení tvrdosti základního materiálu, zdroj: L. Kuzmin, Hot Glide Wax Treatment and the Hardness of Ski Running Surface, Conference Article, 2008

 

Kolegu Kuzmina tedy napadlo, že bude lepší min. pro podmínky hraničního tření žádný skluzný vosk neaplikovat a nesnižovat tak tvrdost základního materiálu skluznice. Bohužel to příliš nefunguje, protože skluzný vosk skluznici nejenom adaptuje na aktuální sněhové podmínky za účelem zlepšení skluzu, nýbrž ji také chrání. Nechráněná skluznice bohužel nefunguje a zde také teorie kolegy Kuzmina naráží tak trochu do zdi!

 

Co s tím? O tom opět příště!

 

sobota 1. června 2024

Jak fungují struktury - teorie třecího tepla...

 Jak ale strukturování za podmínek tzv. hraničního režimu tření funguje? Co jsou základní principy a veličiny, které bychom se měly snažit ovlivňovat?

 

Je to tak, abychom mohli používat správně struktury v tzv. hraničním režimu tření, musíme jim rozumět, musíme chápat – alespoň rámcově, co se to tam dole pod skluznicí děje. Můžeme samozřejmě – podobně jako někteří naši přední odborníci na strukturování – navrhovat nové, mnohovrstvé struktury, měnit hloubku, tvar, přítlak, rychlost posuvu atd., aniž bychom tušili, jaký vliv má který parametr, protože, jak naši mistři brusu sami říkají, je třeba mít velké cíle… Ale vězte prosím, že podobně jako můj čtyřletý syn nemůže řídit provoz jaderné elektrárny, tak nemůže nikdo, kdo nemá ani páru, ani ánung o tom, jak struktury fungují a jaké parametry mají jaký vliv, ani vymyslet, ani vyvinout žádnou dobrou strukturu, bez ohledu na to, zda je to šéf servisu nebo jiný aparátčík kdovíjakého svazu 

 

Jedna z nejrozšířenějších a aktuálně nejvíce preferovaná teorie říká, že základem funkce struktur v tzv. hraničním režimu tření je třecí teplo. Zní to divně, ale smysl to celkem dává. Minimálně pro podmínky mezi ledovým povrchem a ocelovou čepelí. Z předchozího příspěvku víme, že v hraničním režimu tření se oba povrchy, tedy skluznice lyže na straně jedné, a sníh na straně druhé, dotýkají v oblasti asperit, tedy největších nerovností. Víme, že za těchto podmínek je skutečná kontaktní plocha mezi lyží a sněhem velmi malá a že v kontaktních bodech působí relativně vysoký tlak, který je společně s drsností obou povrchů zdrojem relativně velkého tření. A tření vytváří teplo. 

 

Dobře. Ale jak s třením a teplem souvisí strukturování? Díky jemné struktuře se sice zvětší celková plocha skluznice, ale skutečná kontaktní plocha mezi povrchem skluznice a povrchem sněhu se naopak ještě zmenší, rapidně se zmenší počet kontaktních bodů. A protože fyzika funguje i u lyžařů, tak při stejném zatížení (strukturování nemá – Bohu dík – žádný vliv na hmotnost lyžaře) a menší ploše opět vzroste tlak. V důsledku vyššího tlaku se dle této teorie zvýší tření. Vyšší tření vygeneruje více tepla. A? Jednoho teď musí napadnout, že kvůli strukturování jsme dosáhli přesně opačného efektu, než o který jsme usilovali, neb tření se nám naopak zvýšilo, tedy skluz lyže bude ještě horší a energeticky náročnější. To je sice pravda, ale pouze zčásti, respektive pouze v počáteční fázi. Protože – dle teorie třecího tepla – vyšší tření, vyrobí více tepla a větší množství tepla nataví mikroskopické kontaktní plochy. A? A začne se vytvářet vodní film. A? A vodní film začne na straně jedné působit jako lubrikant a jak víme – třeba ze sexu – zvláště tekutý lubrikant prudce snižuje tření, na straně druhé začne vodní film oddělovat povrchy, čímž začne přebírat část zatížení a díky tomu snižovat tlak, a s poklesem tlaku a narůstající lubrikovanou plochou začne prudce klesat tření… A? A lyže lépe klouže!

 

Podle teorie třecího tepla tedy správně zvolené strukturování zlepšuje produkci vodního filmu, a tím umožňuje změnu třecího režimu z tzv. hraničního třecího režimu do tzv. smíšeného režimu tření za chladných podmínek.

 

Obrázek č. 1: a) nenarušený povrch jemnozrnného sněhu, za zmínku stojí krčky či můstky propojující jednotlivá zrna, vznikající primárně při transformaci sněhu, b) v červeném orámování povrch sněhu natavený v důsledku působení tepla (v tomto případě otisk prstu), zdroj: J. H. Lever et. col., Evidence that abrasion can govern snow kinetic friction, Journal of Glaciology, 2018

 

 

Teorii třecího tepla podporuje – mimo jiné – skutečnost, že základní materiál skluznice, tedy UHMWPE je vynikající izolant, tedy kromě toho, že prakticky nevede elektrický proud, velmi špatně přenáší teplo. Pokud tedy teplo neodchází přes – izolující – skluznici směrem do lyže, odchází přes kontaktní body směrem do sněhové pokrývky, kde – jak postuluje teorie třecího tepla – natavuje mikroskopické kontaktní body a generuje vodní film.

 

Z pohledu teorie třecího tepla je naopak problematický grafit, který se ve formě sazí přidává takřka do všech závodních a většiny sintrovaných skluznic lyží. Grafit je totiž nejenom tzv. tuhý lubrikant. Podobně jako tuhý deodorant účinně snižuje pocení, tak grafit coby tuhý lubrikant výborně snižuje tření, a to díky své unikátní lamelární molekulární struktuře.

 

 

Obrázek č. 2: schematické znázornění molekulární struktury grafitu, kde atomy uhlíku v jednotlivých lamelách jsou vázány pevnými vazbami, zatímco jednotlivé vrstvy či lamely mezi sebou pouze velmi slabými silami, zdroj: R. Swar, Effects of Materials and Texturing on Wettability of Ski Base, Degree Project, 2022

 

Zatímco atomy uhlíku v jednotlivých vrstvách jsou vázány velmi pevnými kovaletními vazbami, jsou jednotlivé vrstvy neboli lamely mezi sebou vázány velmi slabými van der Waals silami, díky čemuž lamely po sobě krásně kloužou. Díky svým lubrikačním vlastnostem snižuje tedy grafit tření přímo v mikroskopických kontaktních bodech mezi nerovnostmi na skluznici a nerovnostmi na sněhové pokrývce, čímž částečně oslabuje nárůst třecího tepla v počáteční fázi kontaktu.

 

To ale není hlavní problém grafitu pro teorii třecího tepla. Jak jsme uvedli výše, je grafit nejenom výborný tuhý lubrikant, nýbrž také vynikající vodič. A jako vynikající vodič nejenom vede výborně elektrickou energii (což je u tření na studeném, suchém a krystalickém sněhu velmi preferovaná vlastnost), nýbrž vede také výborně teplo, ano, přesně to teplo, které je v teorii třecího tepla využíváno k natavování kontaktních bodů a produkci vodního filmu. Teplo, které je díky enormně vodivému grafitu odvedeno z místa kontaktních bodů do těla lyže, pak zpomaluje a oddaluje produkci vodního filmu a kontakt mezi skluznicí lyže a sněhem je déle řízen zákony tzv. hraničního tření, a to nikdo nechce…

 

Kromě lubrikačních vlastností a enormní vodivosti má grafit ještě jednu nikoli právě vítanou vlastnost pro podmínky tzv. hraničního režimu tření. Která to je? Grafit je měkký, extrémně měkký. A proto s rostoucím podílem grafitu ve skluznici (u závodních lyží může být podíl grafitu až 20 %) narůstá riziko poklesu tvrdosti skluznice. A právě tvrdost skluznice je ústředním tématem druhé teorie, která vysvětluje efekty strukturování za podmínek slabého vodního filmu neboli tzv. hraničního režimu tření… ale o té si povíme zase někdy příště!

 

 

Obrázek č. 2: tabulka specifikující vlastnosti speciální závodní skluznice pro studené podmínky od společnosti ISOSPORT. Co všechno zde můžeme vyčíst? Obsah sazí, tedy grafitu až 20 %, ale zároveň velmi dobrá tvrdost, tedy 65 shore D, vysoká hustota, tedy 0,985 g/cm3 a slušná schopnost absorbovat vosk 1,8 g/cm2, zdroj: internetová stránka společnosti ISOSPORT VERBUNDTEILE Austria

 

Teorie třecího tepla tedy postuluje, že strukturováním ještě více snížíme plochu kontaktních bodů mezi sněhem a skluznicí, čímž zvýšíme tlak a tření. Toto zvýšené tření má produkovat více třecího tepla. Teplo získané třením pak natavuje kontaktní body a generuje vodní film, vodní film postupně mění režim tření z hraničního na smíšený. Se změnou třecího režimu má prudce klesat tření, a tedy zlepšovat se skluz. Tak tedy dle teorie třecího tepla zlepšuje strukturování skluz v podmínkách hraničního režimu. Ale je tomu opravdu tak???